Answer:
william h. seward secured the purchase of alaska from:
Explanation:
Ionic bond.
In the ionic bond one atom loses one or more electrons, leaving the atom with positive charge, and the other atom accepts those electrons standing with negative charge.
a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
Average velocity = (x( 2.08 ) - x ( 0 )) / ( 2.08 s - 0 s )
x ( 2.08 ) = 1.42 * 2.08² - 0.05 * 2.08³ =
= 1.42 * 4.3264 - 0.443456 = 6.143484 - 0.443456 ≈ 5.7 m
v = ( 5.7 m - 0 m) / (2.08 s - 0 s ) = 5.7 / 2.08 m/s = 27.4 m/s
A. Solid turns into a gas