Answer:

Explanation:
Mass of the ship (m) = 6.9 × 10⁷ kg
Speed of the ship (v) = 33 km/h
First, let us convert the speed from km/h to m/s using the conversion factor.
We know that, 1 km/h = 5/18 m/s
So, 33 km/h = 
Now, we know, the momentum of an object only depends on its mass and speed. Momentum is independent of the length of the object.
So, here, length of the ship doesn't play any role in the determination of the momentum.
Magnitude of momentum of the ship = Mass × Speed
= 
= 
Therefore, the magnitude of ship's momentum is
.
Answer:
A freely suspended magnet comes to rest along the N-S direction.
Explanation:
-Irrespective of direction of suspension, the bar eventually comes to rest at earth's N-S direction.
-Bar end that points to Earth's north is called the <em>North Pole</em>. Bar end that point's to earth's south is called the <em>South pole</em>.
-The reason for this default positioning is called the Directive Property. This is because earth acts as an external magnetic field.
Answer:
Explanation:
KE = ½mv² = ½(6.8)8² = 217.6 J
round as appropriate because that result is way too much precision for the inputs provided. Arguably should be 200 J based on the single significant digit of the velocity.
Answer:
d) The trampoline pushes back up on the gymnast.
Explanation:
According to Newton's third law of motion; for every action force, there is an equal and opposite reaction force. The action force and reaction force are reciprocal to one another i.e. they act oppositely to one another. The reaction force acts in an opposite direction to the action force and vice versa.
In this question, a gymnast pushed down on a trampoline during a routine. This is called the ACTION FORCE. In conformity to Newton's third law, the trampoline pushes back up on the gymnast. This opposite force is called the REACTION FORCE.
Answer:
why?
Explanation:
Do you need any help on anything else?