Answer:
0-4 acceleration comes at 12 m/s where (B) stagnates at 12 m/s and remains for 4 seconds (C) is breaks being activated slowing the car to 6 m/s in 2 seconds and (D) over the course of 4 seconds brings the car to 10 m/s.
Explanation:
Answer:
We conclude that the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Explanation:
Given
To determine
Kinetic Energy (K.E) = ?
We know that a body can possess energy due to its movement — Kinetic Energy.
Kinetic Energy (K.E) can be determined using the formula

where
- K.E is the Kinetic Energy (J)
now substituting m = 1.75, and v = 54 in the formula



J
Therefore, the kinetic energy of a 1.75 kg ball traveling at a speed of 54 m/s is 2551.5 J.
Answer: For ideal machine efficiency = 1. Hence M.A = V. R. The V. R of an ideal machine and the practical machine is a constant or is the same for both
If you do this on Earth, then the acceleration of the falling object is 9.8 m/s^2 ... NO MATTER what it's mass is.
If its mass is 10 kg, then the force pulling it down is 98.1 Newtons. Most people call that the object's "weight".
Answer:
The neutral state of an atom is when it's net charge is zero; that is, the number of protons equals the numbers of electrons. Oxygen is the eighth element in the periodic table, with the symbol O. This means that it has eight electrons in its neutral state. Since it is neutral, it also has eight protons!