1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elan Coil [88]
3 years ago
12

A circular saw blade with radius 0.175 m starts from rest and turns in a vertical plane with a constant angular acceleration of

2.00 rev/s^2. After the blade has turned through 155 rev, a small piece of the blade breaks loose from the top of the blade. After the piece breaks loose, it travels with a velocity that is initially horizontal and equal to the tangential velocity of the rim of the blade. The piece travels a vertical distance of 0.820 m to the floor.
(A) How far does the piece travel horizontally, from where it broke off the blade until it strikes the floor? Express your answer with the appropriate units.

L = ?
Physics
1 answer:
ANEK [815]3 years ago
6 0

Answer:

The distance the piece travel in horizontally axis is

L=3.55m

Explanation:

a=2 \frac{rev}{s^{2}} \\h=0.820m\\r = 0.125 m
\\d=150rev

d= 155 rev = 155(2\pi ) = 310\pi rad

a= 2.0 \frac{rev}{s^{2} } = 2.0(2\pi )  = 4.0\pi \frac{rev}{s^{2} }

d=d_{i}+vo*t+\frac{1}{2}*a*t^{2} \\ di=0\\vo=0\\d=\frac{1}{2}*a*t^{2}\\t=\sqrt{\frac{2*d}{a}}\\t=\sqrt{\frac{2*310 rad}{4\frac{rad}{s^{2}}}} \\t=12.449

w=a*t\\w=4\frac{rad}{s^{2}}*12.449s\\ w=49.79 \frac{rad}{s}

Now the angular velocity is the blade speed so:

V=w*r\\V=49.79 \frac{rad}{s}*0.175m\\V=8.7 \frac{m}{s}

assuming no air friction effects affect blade piece:

time for blade piece to fall to floor

t=\sqrt{\frac{2*h}{g}}\\t=\sqrt{\frac{2*0.820m}{9.8\frac{m}{s^{2} } }}\\t=0.409s

Now is the same time the piece travel horizontally

L=t*V\\L=0.409s*8.7\frac{m}{s}\\L=3.55m

blade piece travels  HORIZONTALLY = (24.5)(0.397) = 9.73 m  ANS

You might be interested in
Ngan has a weight of 314.5 N on Mars and a weight 833.0 N on Earth. What is Ngan's mass on Earth?
mr_godi [17]

Ngan's mass on earth is 85kg.

Ngan has a weight on Mars = 14.5 N

Ngan’s weight on Earth = 833.0 N

Ngan’s mass on Earth = ?

<span>Fg,earth = mg(earth)</span>

<span>M = Fg,earth </span><span>/ g(earth)</span>

<span>M = 833.0 N / 9.8 m/s2</span>

<span>M = 85 kg</span>

4 0
3 years ago
Read 2 more answers
What is the gauge pressure of the water right at the point p, where the needle meets the wider chamber of the syringe? neglect t
Helen [10]

Missing details: figure of the problem is attached.

We can solve the exercise by using Poiseuille's law. It says that, for a fluid in laminar flow inside a closed pipe,

\Delta P =  \frac{8 \mu L Q}{\pi r^4}

where:

\Delta P is the pressure difference between the two ends

\mu is viscosity of the fluid

L is the length of the pipe

Q=Av is the volumetric flow rate, with A=\pi r^2 being the section of the tube and v the velocity of the fluid

r is the radius of the pipe.

We can apply this law to the needle, and then calculating the pressure difference between point P and the end of the needle. For our problem, we have:

\mu=0.001 Pa/s is the dynamic water viscosity at 20^{\circ}

L=4.0 cm=0.04 m

Q=Av=\pi r^2 v= \pi (1 \cdot 10^{-3}m)^2 \cdot 10 m/s =3.14 \cdot 10^{-5} m^3/s

and r=1 mm=0.001 m

Using these data in the formula, we get:

\Delta P = 3200 Pa

However, this is the pressure difference between point P and the end of the needle. But the end of the needle is at atmosphere pressure, and therefore the gauge pressure (which has zero-reference against atmosphere pressure) at point P is exactly 3200 Pa.

8 0
3 years ago
What is the speed of sound for a noise that travels 2km in 5.8s?​
Gnesinka [82]

Answer:

Explanation:

Speed is defined as the rate at which an object covers a particular distance. So the formula for determining speed is given as the ratio of distance to time taken for covering that distance.

Speed = Distance/Time

As here the distance is given in km units and time in s units, so the units of any one parameter should be changed. Since we know that speed of sound is always about 300 m/s. So it is better to convert the unit of distance from km to m.

Hence, now the distance traveled by the noise is 2000 m and time taken is 5.8 s.

So the speed of noise = Distance/Time = 2000/5.8=345 m/s.

Thus, the speed of noise is slightly greater than the speed of sound and it is found to be 345 m/s.

5 0
3 years ago
What group does paracetamol come under
agasfer [191]
Paracetamol is grouped within the 'painkillers' category. 
6 0
3 years ago
Select all that apply
borishaifa [10]
a,b,c  is your answer light and sound are not considered matter and heat is energy created from matter and electricity is particles moving basically therefore electricity is matter hope this helps
5 0
3 years ago
Other questions:
  • What do MRI and ultrasound have in common as diagnostic imaging techniques? Check all that apply.
    7·2 answers
  • List 3 examples in which friction helps us or makes things easier in our daily life. Explain the effect of friction for each.
    14·2 answers
  • A satellite is always being pulled by gravity.<br> a. True<br> b. False
    11·1 answer
  • A wave has a period of 4 seconds. What is its frequency?
    15·1 answer
  • The bonds that hold water molecules together are due to shared electrons and known as
    11·1 answer
  • A rock is thrown downward from an unknown height above the ground with an initial speed of 10m/s. It strikes the ground 3s later
    12·1 answer
  • Ratio of acceleration due to grabity and universal gravitational constant
    14·1 answer
  • Please help me on these questions in the picture.
    14·2 answers
  • I'd like some help in these two questions please, thankyou so much. have a great day! stay safe and stay happy. (there are two p
    10·1 answer
  • You want to determine whether the mass of an object attached to a parachute affects the time it takes to fall to the ground. In
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!