1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kow [346]
3 years ago
8

You and your brother are reading the same novel. You want to get ahead of him in the book, so you decide to read 30 minutes long

er than your brother reads. Write an equation for the number of minutes you read, y, when your brother reads x number of minutes. How many minutes will you read if your brother reads for 15minutes?
Mathematics
1 answer:
NemiM [27]3 years ago
6 0

the equation would be y = 30 + x and if your brother will read for 15 minutes then you'll read for 45 minutes i believe.

You might be interested in
Find the area of the figure.<br> area<br> units2
Verdich [7]

Answer:

<u><em></em></u>33   units^{2}

I counted the squares.

8 0
2 years ago
Find the two square roots of 9/4?
GaryK [48]

Answer: 0.75

Step-by-step explanation:

3 0
3 years ago
What is the measurement of ∠G? Show your work.
san4es73 [151]

Answer:

x = 40

Step-by-step explanation:

The angles add to 180 degrees

30+110 +x = 180

Combine like terms

140 +x = 180

Subtract 140 from each side

140+x-140 =180-140

x = 40

3 0
3 years ago
Read 2 more answers
Four out of 18 male student and
prisoha [69]

Answer:

Male 2:9

Female 1:7

Step-by-step explanation:

4 0
3 years ago
Determine formula of the nth term 2, 6, 12 20 30,42​
nalin [4]

Check the forward differences of the sequence.

If \{a_n\} = \{2,6,12,20,30,42,\ldots\}, then let \{b_n\} be the sequence of first-order differences of \{a_n\}. That is, for n ≥ 1,

b_n = a_{n+1} - a_n

so that \{b_n\} = \{4, 6, 8, 10, 12, \ldots\}.

Let \{c_n\} be the sequence of differences of \{b_n\},

c_n = b_{n+1} - b_n

and we see that this is a constant sequence, \{c_n\} = \{2, 2, 2, 2, \ldots\}. In other words, \{b_n\} is an arithmetic sequence with common difference between terms of 2. That is,

2 = b_{n+1} - b_n \implies b_{n+1} = b_n + 2

and we can solve for b_n in terms of b_1=4:

b_{n+1} = b_n + 2

b_{n+1} = (b_{n-1}+2) + 2 = b_{n-1} + 2\times2

b_{n+1} = (b_{n-2}+2) + 2\times2 = b_{n-2} + 3\times2

and so on down to

b_{n+1} = b_1 + 2n \implies b_{n+1} = 2n + 4 \implies b_n = 2(n-1)+4 = 2(n + 1)

We solve for a_n in the same way.

2(n+1) = a_{n+1} - a_n \implies a_{n+1} = a_n + 2(n + 1)

Then

a_{n+1} = (a_{n-1} + 2n) + 2(n+1) \\ ~~~~~~~= a_{n-1} + 2 ((n+1) + n)

a_{n+1} = (a_{n-2} + 2(n-1)) + 2((n+1)+n) \\ ~~~~~~~ = a_{n-2} + 2 ((n+1) + n + (n-1))

a_{n+1} = (a_{n-3} + 2(n-2)) + 2((n+1)+n+(n-1)) \\ ~~~~~~~= a_{n-3} + 2 ((n+1) + n + (n-1) + (n-2))

and so on down to

a_{n+1} = a_1 + 2 \displaystyle \sum_{k=2}^{n+1} k = 2 + 2 \times \frac{n(n+3)}2

\implies a_{n+1} = n^2 + 3n + 2 \implies \boxed{a_n = n^2 + n}

6 0
2 years ago
Other questions:
  • Question 3
    6·1 answer
  • Can someone help please?
    15·1 answer
  • If cos=3/5, then tan=
    11·2 answers
  • If the temperature outside is 25 Celsius what clothing would be the most appropriate
    13·2 answers
  • The expression, involving exponents , to represent the shaded area, in square inches, diagram. Then use that expression to calcu
    5·1 answer
  • Another candle has a volume of 75 cubic inches and a height of 6 inches. What is the radius, in inches, of this candle? Round yo
    9·1 answer
  • What is another way to describe the following expression?<br> 5−(x+y)tothepowerof3
    7·1 answer
  • A number is multiplied by 4 and then 12 is added. the result is 36. what is the number?
    9·2 answers
  • What is the length of segment HK?
    13·1 answer
  • Open Response Factor 12m + 5n. Explain<br> how you found your answer. (Lesson 4)
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!