The graph located in the upper right corner of the image attached shows the graph of y = 3[x]+1.
In order to solve this problem we have to evaluate the function y = 3[x] + 1 with a group of values.
With x = { -3, -2, -1, 0, 1, 2, 3}:
x = -3
y = 3[-3] + 1 = -9 + 1
y = -8
x = -2
y = 3[-2] + 1 = -6 + 1
y = -5
x = -1
y = 3[-1] + 1 = -3 + 1
y = -2
x = 0
y = 3[0] + 1 = 0 + 1
y = 1
x = 1
y = 3[1] + 1 = 3 + 1
y = 4
x = 2
y = 3[2] + 1 = 6 + 1
y = 7
x = 3
y = 3[3] + 1 = 9 + 1
y = 10
x y
-3 -8
-2 -5
-1 -2
0 1
1 4
2 7
3 10
The graph that shows the function y = 3[x] + 1 is the one located in the upper right corner of the image attached.
No false.
Remember the solution(s) to a system of equations is where the graphs all intersect if at all.
For the case of say a system of 2 lines, you can see the different possible outcomes..
-- If the two lines intersect at some point (x,y), that is one unique solution
-- If the two lines are parallel to each other, you see there are no intersection points and therefore this system of two parallel lines has no solutuion.
-- If the two lines overlap, really the same line written as a multiple of the other line, then you see they intersect at all points along the line, here there are infinite solutions.
How much for 1lb
2.99/14=0.213/1=$0.21
it is 21 cents per lb
Answer:
<em>D.</em><em> </em><em>
</em>
Step-by-step explanation:
<em>2</em><em>÷</em><em> </em><em>6</em><em> </em><em>=</em><em> </em><em>0</em><em>.</em><em>3</em><em>3</em><em>3</em><em>3</em><em>3</em>
<em>As </em><em>you </em><em>can</em><em> </em><em>see</em><em> </em><em>3</em><em> </em><em>is </em><em>repeating</em><em>.</em>
<em>Therefore</em><em> </em><em> </em><em>
</em><em> </em><em>as </em><em>repeating</em><em> </em><em>decimal</em><em> </em><em>form</em><em>.</em>