The energy of a single photon at the transmitted frequency is 
Answer: Option b
<u>Solution:</u>
Energy of photon is given as 
Where c is the velocity of Light 
h is planck's constant 
λ is the wavelength of photon
Energy of photon can be rewritten as 
Where f is the frequency of photon
Frequency of photon is obtained by dividing velocity of light by wavelength of photon.


Answer:
(a) 80.36 m/s^2
(b) 0.0933 second
Explanation:
initial velocity, u = 7.5 m/s
final velocity, v = 0 m/s
distance moved, s = 0.350 m
(a) Let a be the deceleration.
Use third equation of motion


a = 80.36 m/s^2
Thus, the deceleration is 80.36 m/s^2.
(b) Let the time taken is t
Use first equation of motion
v = u + a t
0 = 7.5 + 80.36 x t
t = 0.0933 second
Electronic signals are converted into a 'ray of light' -
The acceleration of the body is provided by the tension in the rope.
<h3>What is centripetal acceleration?</h3>
The centripetal acceleration is given by a = v^2/r. v = velocity of the body, r = radius
a = (8.40 m/s)^2/(8.50 m)
a = 8.3 m/s^2
The tension in the rope is the force that provides the centripetal force in the rope.
Learn more of centripetal acceleration:brainly.com/question/14465119
#SPJ1