The force exerted by student A with his scooter is 306 N and that of student B is 204 N.
<h3>
Force applied by each student</h3>
The force exerted by each student is calculated from Newton's second law of motion.
F = ma
where;
- m is mass
- a is acceleration
F(A) = 127.5 x 2.4
F(A) = 306 N
F(B) = 120 x 1.7
F(B) = 204 N
Thus, the force exerted by student A with his scooter is 306 N and that of student B is 204 N.
Learn more about force here: brainly.com/question/12970081
#SPJ1
To solve this problem we will use the concepts related to the electromagnetic force related to the bases founded by Coulumb, the mathematical expression is the following as a function of force per unit area:

Here,
F = Force
L = Length
k = Coulomb constant
I =Each current
d = Distance
Force of the wire one which is located along the line y to 0.47m is
then we have



Considering the B is zero at




Therefore the value of y for the line in the plane of the two wires along which the total B is zero is 0.25m
Answer:

Explanation:
Since the force applied is parallel to the displacement of the car, the work done on the car is simply given by:

where
F = 1210 N is the force applied on the car
d = 201 m is the displacement of the car
Substituting numbers into the equation, we find:

Answer:
t=20s
Explanation:
To solve this problem we must apply the first law of thermodynamics, which indicates that the energy that enters a system is the same that must come out, resulting in the following equation
For this problem we will assume that the water is in a liquid state, since it is a domestic refrigerator
q=m.cp.(T2-T1)
q=heat
m=mass of water =600g=0.6Kg
cp=
specific heat of water=4186J/kgK
T2=temperature in state 2=20°C
T1=temperature in state 1=0°C
solving:
q=(0.6)(4186)(20-0)=50232J
A refrigerator is a device that allows heat to be removed to an enclosure (Qin), by means of the input of an electrical energy (W) and the heat output (Qout), the coefficient of performance COP, allows to know the ratio between the heat removed ( Qin) and the added electrical power (W), the equation for the COP is

To solve this exercise we must know the value of the heat removed to the water (Qin)
solving for Qin
Qin=(COP)(Win)
Qin=(5)(500W)=2500W
finally we remember that the definition of power is the ratio of work over time
w=work
p=power=500w
