Answer:
Kd = [Ag⁺] × [NH₃]² / [Ag(NH₃)₂⁺]
Explanation:
Let's consider the dissociation reaction of the complex ion Ag(NH₃)₂⁺.
Ag(NH₃)₂⁺(aq) ⇄ Ag⁺(aq) + 2 NH₃(aq)
The dissociation constant, Kd, is the equilibrium constant for the dissociation of the complex ion, that is, it is equal to the product of the concentrations of the products raised to their stoichiometric coefficients divided by the product of the concentrations of the reactants raised to their stoichiometric coefficients.
The dissociation constant for this reaction is:
Kd = [Ag⁺] × [NH₃]² / [Ag(NH₃)₂⁺]
Answer: Mothballs have weak intermolecular forces.
No all substances do not behave like mothballs at normal conditions. Example: benzene , chloroform
Explanation:
Sublimation is a process of converting a substance from solid state to gaseous state without the formation of liquid at constant temperature.
A substance which undergoes sublimation is called as sublimating substance.
As mothballs is made of napthalene which has weak inter molecular forces of attraction between its molecules, it directly sublimes into gaseous state without leaving any residue and is called as a sublimating substance.
Not all substances behave like mothballs at normal conditions. Example: benzene , chloroform
Across a period I.E increases progressively from left to right
Explanation:
The trend of the first ionization energy is such that across a period I.E increases from left to right due to the decreasing atomic radii caused by the increasing nuclear charge. This not compensated for by successive electronic shells.
- Ionization energy is a measure of the readiness of an atom to lose an electron.
- The lower the value, the easier it is for an atom to lose an electron.
- Elements in group I tend to lose their electrons more readily whereas the halogens hold most tightly to them.
- The first ionization energy is the energy needed to remove the most loosely bonded electron of an atom in the gaseous phase.
Learn more:
Ionization energy brainly.com/question/6324347
#learnwithBrainly
Answer:
The metal probably increases reaction rate by either holding reactant molecules in the correct orientation to react or by weakening or breaking bonds in reactant molecules to make them more reactive.
This is an example of heterogeneous catalysis.
It is heterogeneous catalysis because the catalyst is a solid and the reactants are gases. In heterogeneous catalysis, the catalyst is in a different phase than the reactants
Explanation:
got it right :)