1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
15

Consider the combustion of ethanol C2H5OH with air. Assume the air is dry and comprised of 21% oxygen and 79% nitrogen on a mola

r basis. a. Determine the air/fuel ratio on a molar basis. b. Determine the air/fuel ratio on a mass basis.
Engineering
1 answer:
babunello [35]3 years ago
8 0

Answer:

a) 14.285

b) 8.956

Explanation:

Given :

The combustion of the ethanol is with air

Air is 21% oxygen

and, 79% nitrogen

thus, for 1 O₂ we have  (79/21)N₂

thus,

the stochiometric equation for the combustion is as:

C₂H₅OH + 3[O₂ + (79/21)N₂]   ⇒   2CO₂ + 3H₂O + 3 × (79/21)N₂

Now,

the molecular weight of the fuel (C₂H₅OH) = (2× 12) + (5 × 1) + 16 + 1 = 46 g/mol

Molecular weight of the air = (2 × 16) + ((79/21) × 28) = 137.33 g/mol

a) air/fuel ratio on a molar basis

we have

air-fuel ratio = moles of air / moles of fuel

or

air-fuel ratio = [3 × 1 + 3 × (79/21)] / 1 = 14.285

b) air/fuel ratio on a mass basis = Mass of air / mass of fuel

or

air/fuel ratio on a mass basis = (number of moles of air × molar mass of air) / (number of moles of fuel × molar mass of fuel)

on substituting the values, we have

air/fuel ratio on a mass basis = (3 × 137.33) / (1 × 46) = 8.956

You might be interested in
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
4 years ago
How does accenture generate value for clients through agile and devops?
Stells [14]
By permanently locking in stakeholder requirements during a project's planning phase
4 0
3 years ago
- What will happen if high voltage from the HV battery or motor-generator is shorting to frame ground?
Novosadov [1.4K]

Answer:

Unlike a low voltage battery such as 12V, high voltage from a High Voltage battery should not be grounded to the chassis for several numbers of reason which are;

- HV up to 350V have a corresponding high current which generate unwanted magnetic field and causes magnetic interference. This can be reduced by using a twisted conductor so that the interference can be cancelled.

-HV can result to surges which result to spark over and flash over between phase and ground.

5 0
3 years ago
What similarities do wind and solar energy share?
Viefleur [7K]

Answer:

Both come from the sun

Both are reusable sources

and both don't cause pollution

Explanation:

3 0
2 years ago
A teenage brain is already fully developed to enable us to manage risks effectively.
Kisachek [45]

Answer:

false

Explanation:

the brain is only really fully devolved by age 26

3 0
2 years ago
Read 2 more answers
Other questions:
  • A network address of 172.16.0.0 /12 has been given. Which of the following accurately describes this network? (select one or mor
    9·1 answer
  • The dramatic growth in the number of power data centers, cell towers, base stations, recharge mobiles, and so on is damaging the
    8·1 answer
  • A damped harmonic oscillator consists of a mass on a spring, with a damping force proportional to the speed of the block. If the
    12·1 answer
  • A bearing uses SAE 30 oil with a viscosity of 0.1 N·s/m2. The bearing is 30 mm in diameter, and the gap between the shaft and th
    9·1 answer
  • A 240 V, 60 Hz squirrel-cage induction motor has a full-load slip of 0.02 and a full-load speed of 1764 rpm. The winding resista
    13·1 answer
  • An important material for advanced electronic technologies is the pure silicon.a)-True b)-False
    9·1 answer
  • Given the latent heat of fusion (melting) and the latent heat of vaporisation for water are Δhs = 333.2 kJ/kg and Δhv = 2257 kJ/
    15·1 answer
  • Need help with these 2 ez questions pls help me will mark brainiest.
    8·1 answer
  • Ordan has _ 5 8 can of green paint and _ 3 6 can of blue paint. If the cans are the same size, does Jordan have more green paint
    15·1 answer
  • What is the next measurement after 2' -6" on the architect's scale?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!