1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
4 years ago
10

Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba

tch of 50 steel parts. For the high-speed steel tool, the Taylor equation parameters are n = 0.130 and C = 80 (m/min). The price of the HSS tool is $20.00, and it is estimated that it can be ground and reground 15 times at a cost of $2.00 per grind. Tool change time is 3 min. Both carbide and ceramic tools are inserts and can be held in the same mechanical toolholder. The Taylor equation parameters for the cemented carbide are n = 0.30 and C = 650 (m/min), and for the ceramic: n = 0.6 and C = 3500 (m/min). The cost per insert for the carbide is $8.00, and for the ceramic is $10.00. There are six cutting edges per insert in both cases. Tool change time = 1.0 min for both tools. The time to change a part = 2.5 min. Feed = 0.30 mm/rev, and depth of cut = 3.5 mm. Cost of operator and machine time = $40/hr. Part diameter = 73 mm, and length = 250 mm. Setup time for the batch = 2.0 hr. For the three tooling cases, compare (a) cutting speeds for minimum cost, (b) tool lives, (c) cycle time, (d) cost per production unit, and (e) total time to complete the batch. (f) What is the proportion of time spent actually cutting metal for each tool material?
Engineering
1 answer:
Tpy6a [65]4 years ago
3 0

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

You might be interested in
Compute the volume percent of graphite, VGr, in a 3.2 wt% C cast iron, assuming that all the carbon exists as the graphite phase
Yanka [14]

Answer:

The volume percentage of graphite is 10.197 per cent.

Explanation:

The volume percent of graphite is the ratio of the volume occupied by the graphite phase to the volume occupied by the graphite and ferrite phases. The weight percent in the cast iron is 3.2 wt% (graphite) and 96.8 wt% (ferrite). The volume percentage of graphite is:

\%V_{gr} = \frac{V_{gr}}{V_{gr}+V_{fe}} \times 100\,\%

Where:

V_{gr} - Volume occupied by the graphite phase, measured in cubic centimeters.

V_{fe} - Volume occupied by the graphite phase, measured in cubic centimeters.

The expression is expanded by using the definition of density and subsequently simplified:

\%V_{gr} = \frac{\frac{m_{gr}}{\rho_{gr}} }{\frac{m_{gr}}{\rho_{gr}}+\frac{m_{fe}}{\rho_{fe}}}\times 100\,\%

Where:

m_{fe}, m_{gr} - Masses of the ferrite and graphite phases, measured in grams.

\rho_{fe}, \rho_{gr} - Densities of the ferrite and graphite phases, measured in grams per cubic centimeter.

\%V_{gr} = \frac{1}{1+\frac{\frac{m_{fe}}{\rho_{fe}} }{\frac{m_{gr}}{\rho_{gr}} } }\times 100\,\%

\%V_{gr} = \frac{1}{1 + \left(\frac{\rho_{gr}}{\rho_{fe}} \right)\cdot\left(\frac{m_{fe}}{m_{gr}} \right)} \times 100\,\%

If \rho_{gr} = 2.3\,\frac{g}{cm^{3}}, \rho_{fe} = 7.9\,\frac{g}{cm^{3}}, m_{gr} = 3.2\,g and m_{fe} = 96.8\,g, the volume percentage of graphite is:

\%V_{gr} = \frac{1}{1+\left(\frac{2.3\,\frac{g}{cm^{3}} }{7.9\,\frac{g}{cm^{3}} } \right)\cdot \left(\frac{96.8\,g}{3.2\,g} \right)} \times 100\,\%

\%V_{gr} = 10.197\,\%V

The volume percentage of graphite is 10.197 per cent.

5 0
3 years ago
6.03 Discussion: Then & Now - Safety
34kurt

Answer:

Information technology is important in our lives because it helps to deal with every day's dynamic things. Technology offers various tools to boost development and to exchange information. Both these things are the objective of IT to make tasks easier and to solve many problems.

6 0
3 years ago
(i) what assumptions about the relationship between the inputs and output are inherent in this specification? do scatter plots s
olasank [31]

A problem that will be handled by a procedure is described by an input-output specification.

<h3>What is input and output specification?</h3>
  • An input-output specification outlines the issue that a procedure will try to solve. The input part and the output part are its two components.
  • The input component outlines the kind of data object that should be provided for each actual argument as well as any presumptions that the process might make.
  • A technical specification known as an output specification defines the project scope primarily through performance-based requirements.
  • It is used to assess technical compliance and serves as the technical cornerstone of both the procurement and delivery phases.
  • Known as classical specifications, they outline the precise services to be provided, sometimes in great detail, along with the standard you must meet and the approach you must take to meet the standard.

To Learn more About input-output specification Refer To:

brainly.com/question/25265909

#SPJ4

5 0
1 year ago
15. Whether technology is good or bad depends on how it is used.
Reptile [31]

Answer:

true

Explanation:

4 0
2 years ago
Read 2 more answers
This manometer is used to measure the difference in water level between the two tanks.
SpyIntel [72]

Answer:

a) True

Explanation:

hope it helps u

3 0
3 years ago
Other questions:
  • Which pendulum will.mobe faster​
    13·1 answer
  • How much work is performed if a 400 lb weight is lifted 10 ft ?
    8·1 answer
  • A steel rectangular tube has outside dimensions of 150 mm x 50 mm and a wall thickness of 4 mm. State the inside dimensions, the
    5·1 answer
  • What is torque and how does it work?
    14·2 answers
  • In your opinion, what is the external opportunity cost of a successful biking company in a community
    7·1 answer
  • What are the equipment requirements for windshields and side windows?
    13·1 answer
  • Why why why why why why why
    7·2 answers
  • How many astronauts work<br> in the International Space Station
    7·1 answer
  • Which lists the order of Energy Career Pathways from the source to the customer?
    9·2 answers
  • What is the difference between a natural and artificial diamond ​
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!