1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rodikova [14]
3 years ago
10

Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba

tch of 50 steel parts. For the high-speed steel tool, the Taylor equation parameters are n = 0.130 and C = 80 (m/min). The price of the HSS tool is $20.00, and it is estimated that it can be ground and reground 15 times at a cost of $2.00 per grind. Tool change time is 3 min. Both carbide and ceramic tools are inserts and can be held in the same mechanical toolholder. The Taylor equation parameters for the cemented carbide are n = 0.30 and C = 650 (m/min), and for the ceramic: n = 0.6 and C = 3500 (m/min). The cost per insert for the carbide is $8.00, and for the ceramic is $10.00. There are six cutting edges per insert in both cases. Tool change time = 1.0 min for both tools. The time to change a part = 2.5 min. Feed = 0.30 mm/rev, and depth of cut = 3.5 mm. Cost of operator and machine time = $40/hr. Part diameter = 73 mm, and length = 250 mm. Setup time for the batch = 2.0 hr. For the three tooling cases, compare (a) cutting speeds for minimum cost, (b) tool lives, (c) cycle time, (d) cost per production unit, and (e) total time to complete the batch. (f) What is the proportion of time spent actually cutting metal for each tool material?
Engineering
1 answer:
Tpy6a [65]3 years ago
3 0

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

You might be interested in
The combustion chamber has different shapes depending on the make and model of the engine. True or false
Alisiya [41]

Answer:

svdsdfdfsdfssdf

Explanation:

fsdsdfsdffsdsfdsdf

5 0
3 years ago
A composite wall is to be used to insulate a freezer chamber at -350C. Two insulating materials are to be used with conductiviti
choli [55]

Answer:

thickness1=1.4m

thickness2=2.2m

convection coefficient=0.33W/m^2K

Explanation:

you must use this equation to calculate the thickness:

L=K(T2-T1)/Q

L=thickness

T=temperature

Q=heat

L1=0.04*(0--350)/10=1.4m

L2=0.1(220-0)/10=2.2m

Then use this equation to calculate the convective coefficient

H=Q/(T2-T1)

H=10/(250-220)=0.33W/m^2K

7 0
3 years ago
A 35-ft³ rigid tank has propane at 25 psia, 540 R and is connected by a valve to another tank of 20 ft³ with propane at 40 psia,
gulaghasi [49]

Answer:

final pressure = 200KPa or 29.138psia

Explanation:

The detailed step by step calculations with appropriate conversion factors applied are as shown in the attachment.

8 0
3 years ago
How engineer can find problems and solutions <br><br><br> Give example
Mademuasel [1]

Answer:

They find problems and solutions by working together

Explanation:

4 0
3 years ago
Which lens is wide-angle?
PIT_PIT [208]

A wide-angle lens has a focal length of 35mm or shorter, which gives you a wide field of view. The wider your field of view, the more of the scene you'll be able to see in the frame. These lenses are ideal for many scenarios, and most photographers have at least one trusty wide-angle lens in their kit.

BRAINLIEST PLSSS

5 0
1 year ago
Other questions:
  • A mass weighing 22 lb stretches a spring 4.5 in. The mass is also attached to a damper with Y coefficient . Determine the value
    12·1 answer
  • An inventor claims to have developed a power cycle operating between hot and cold reservoirs at 1175 K and 295 K, respectively,
    9·1 answer
  • Those in this career install, maintain, and repair electrical wiring,
    5·2 answers
  • A crude fermenter is set up in a shed in the backyard of a suburban house. Under anaerobic conditions with ammonia as the nitrog
    9·1 answer
  • A construction company distributes its products by trucks loaded at its loading station. A backacter in conjunction with trucks
    10·1 answer
  • This elementary problem begins to explore propagation delayand transmission delay, two central concepts in data networking. Cons
    6·1 answer
  • The application of technology results in human-made things called
    9·1 answer
  • If a tapered roller bearing is adjusted to loose, the bearing will bind and overheat.
    11·1 answer
  • What is valve overlap?
    5·1 answer
  • What is differentiation​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!