Answer:
#include <stdio.h>
typedef struct InventoryTag_struct {
int itemID;
int quantityRemaining;
} InventoryTag;
int main(void) {
InventoryTag redSweater;
redSweater.itemID = 314;
redSweater.quantityRemaining = 500;
/* Your solution goes here */
printf("Inventory ID: %d, Qty: %d\n",redSweater.itemID,redSweater.quantityRemaining);
getchar();
return 0;
}
Explanation:
Answer:
mass of the air = 14.62kg
Workdone = 415.88 kJ
Heat transfer = 415.88 kJ
Explanation:
Please find the attached files for the solution
Answer:
look up the assignment number. its in the left side of the screen. its what i did when i had problems.
Explanation:
Answer:
16 seconds
Explanation:
Given:
C = 60
L = 4 seconds each = 4*4 =16
In this problem, the first 3 timing stages are given as:
200, 187, and 210 veh/h.
We are to find the estimated effective green time of the fourth timing stage. The formula for the estimated effective green time is:
Let's first find the fourth stage critical lane group ratio
, using the formula:
![C = \frac{1.5L +5}{1 - ( \frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800}) + ( \frac{v}{s})}](https://tex.z-dn.net/?f=%20C%20%3D%20%5Cfrac%7B1.5L%20%2B5%7D%7B1%20-%20%28%20%5Cfrac%7B200%7D%7B1800%7D%20%2B%20%5Cfrac%7B187%7D%7B1800%7D%20%2B%20%5Cfrac%7B210%7D%7B1800%7D%29%20%2B%20%28%20%5Cfrac%7Bv%7D%7Bs%7D%29%7D%20)
![60 = \frac{1.5*16 + 5}{1 - ( \frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800}) + ( \frac{v}{s})}](https://tex.z-dn.net/?f=%2060%20%3D%20%5Cfrac%7B1.5%2A16%20%2B%205%7D%7B1%20-%20%28%20%5Cfrac%7B200%7D%7B1800%7D%20%2B%20%5Cfrac%7B187%7D%7B1800%7D%20%2B%20%5Cfrac%7B210%7D%7B1800%7D%29%20%2B%20%28%20%5Cfrac%7Bv%7D%7Bs%7D%29%7D%20)
Solving for
, we have:
Let's also calculate the volume capacity ratio X,
![X = (\frac{200}{1800} + \frac{187}{1800} + \frac{210}{1800} + 0.185)(\frac{60}{60-16}](https://tex.z-dn.net/?f=X%20%3D%20%28%5Cfrac%7B200%7D%7B1800%7D%20%2B%20%5Cfrac%7B187%7D%7B1800%7D%20%2B%20%5Cfrac%7B210%7D%7B1800%7D%20%2B%200.185%29%28%5Cfrac%7B60%7D%7B60-16%7D%20)
X = 0.704
For the the estimated effective green time of the fourth timing stage, we have:
Substituting figures in the equation, we now have:
15.78 ≈ 16 seconds
The estimated effective green time of the fourth timing stage is 16 seconds
Answer:
A)
D = 158.42 kmol/h
B = 191.578 kmol/h
B) Rmin = 1.3095
Explanation:
<u>a) Determine the distillate and bottoms flow rates ( D and B ) </u>
F = D + B ----- ( 1 )
<em>Given data :</em>
F = 350 kmol/j
Xf = 0.45 mole
yD ( distillate comp ) = 0.97
yB ( bottom comp ) = 0.02
back to equation 1
350(0.45) = 0.97 D + 0.02 B ----- ( 2 )
where; B = F - D
Equation 2 becomes
350( 0.45 ) = 0.97 D + 0.02 ( 350 - D ) ------ 3
solving equation 3
D = 158.42 kmol/h
resolving equation 2
B = 191.578 kmol/h
<u>B) Determine the minimum reflux ratio Rmin</u>
The minimum reflux ratio occurs when the enriching line meets the q line in the VLE curve
first we calculate the value of the enriching line
Y =( Rm / R + 1 m ) x + ( 0.97 / Rm + 1 )
q - line ; y = ( 9 / 9-1 ) x - xf/9-1
therefore ; x = 0.45
Finally Rmin
= (( 0.97 / (Rm + 1 )) = 0.42
0.42 ( Rm + 1 ) = 0.97
∴ Rmin = 1.3095
<u />
<u />
<u />
<u />
<u />