1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aneli [31]
3 years ago
9

A network address of 172.16.0.0 /12 has been given. Which of the following accurately describes this network? (select one or mor

e)
(A) The ending address of this network is 172.255.255.255
(B) The ending address of this network is 172.31.255.255
(C) This is private class A network with 4 bits of sub-netting
(D) This is not a valid network address because the 255.240.0.0 mask is wrong
(E) This is private class B network using a default mask
Engineering
1 answer:
ludmilkaskok [199]3 years ago
3 0

Answer:

B and E is correct.

Explanation:

Given that network address

172.16.0.0/12

This is class B network type.

The ending of this network will be 172.31.255.255

In IP version 4 there are four following type of classes

1)Class A (0-127)

2)Class B (128-191)

3)Class C (191-223)

4)Class D(224-239)

5)Class E (240-255)

Generally class A,B,C and D are used.

So our options B and E is correct.

You might be interested in
Design a PLC ladder logic program to control the operation of a conveyor-storage system using the following sequence: - 1. Progr
Phantasy [73]

Answer:

See explaination

Explanation:

Kindly check attachment for the step by step solution of the given problem.

8 0
3 years ago
An ideal reheat Rankine cycle with water as the working fluid operates the boiler at 15,000 kPa, the reheater at 2000 kPa, and t
solniwko [45]

Answer:

See the explanation below.

Explanation:

First find the enthalpies h₁, h₂, h₃, h₄, h₅, and h₆.

Find h₁:

Using Saturated Water Table and given pressure p₁ = 100 kPa

h₁ = 417.5 kJ/kg

Find h₂:

In order to find h₂, add the w_{p} to h₁, where  w_{p}  is the work done by pump and h₁ is the enthalpy computed above h₁ = 417.5 kJ/kg.

But first we need to compute  w_{p} To computer  

Pressures:

p₁ = 100 kPa

p₂ = 15,000 kPa

and

Using saturated water pressure table, the volume of water v_{f} = 1.0432

Dividing 1.0432/1000 gives us:

Volume of water = v₁ =  0.001043 m³/kg

Compute the value of h₂:

h₂ = h₁ + v₁ (p₂ - p₁)

    = 417.5 kJ/kg + 0.001043 m³/kg ( 15,000 kPa - 100 kPa)

    =  417.5 + 0.001043 (14900)

    = 417.5 + 15.5407

    = 433.04 kJ/kg

Find h₃  

Using steam table:

At pressure p₃ = 15000 kPa

and Temperature = T₃ = 450°C

Then h₃ = 3159 kJ/kg

The entropy s₃ = 6.14 kJ/ kg K

Find h₄

Since entropy s₃ is equal to s₄ So

s₄ = 6.14 kJ/kgK

To compute h₄

s₄ = s_{f} + x_{4} s_{fg}

x_{4} = s_{4} -s_{f} /s_{fg}

x_{4} = 6.14 -  2.45 / 3.89

x_{4}   = 0.9497

The enthalpy h₄:

h₄ = h_{f} +x_{4} h_{fg}

    = 908.4 + 0.9497(1889.8)

    =  908.4 + 1794.7430

    = 2703 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₃ = 6.14 kJ/ kg K and pressure p₄ = 2000 kPa

Find h₅

Using steam table:

At pressure p₅ = 2000 kPa

and Temperature = T₅ = 450°C

Then h₅  = 3358 kJ/kg

Find h₆:

Since the entropy s₅ = 7.286 kJ/kgK is equal s₆ to  So

s₆ = 7.286 kJ/kgK = 7.29 kJ/kgK

To compute h₆

s₆ = s_{f} + x_{6} s_{fg}

x_{6} = s_{6} -s_{f} /s_{fg}

x_{6} = 7.29 - 1.3028 / 6.0562

x_{6}   = 0.988

The enthalpy h₆:

h₆ = h_{f} +x_{6} h_{fg}

    = 417.51 + 0.988 (2257.5)

    = 417.51 + 2230.41

  h₆ =  2648 kJ/kg

This can simply be computed using the software for steam tables online. Just use the entropy s₅ = 7.286 kJ/kgK and pressure p₅ = 2000 kPa

Compute power used by pump:

P_{p} is found by using:

mass flow rate = m =  1.74 kg/s

Volume of water = v₁ =  0.001043 m³/kg

p₁ = 100 kPa

p₂ = 15,000 kPa

P_{p}  = ( m ) ( v₁ ) ( p₂ - p₁ )

     = (1.74 kg/s) (0.001043 m³/kg) (15,000 kPa - 100 kPa)

     = (1.74 kg/s) (0.001043 m³/kg) (14900)

     = 27.04

P_{p} = 27 kW

Compute heat added q_{a} and heat rejected q_{r}  from boiler using computed enthalpies:

q_{a} = ( h₃ - h₂ ) + ( h₅ - h₄ )

      = ( 3159 kJ/kg - 433.04 kJ/kg ) + ( 3358 kJ/kg - 2703 kJ/kg )

      = 2726 + 655

      = 3381  kJ/kg

q_{r} =  h₆ - h₁

  = 2648 kJ/kg - 417.5 kJ/kg

  = 2232 kJ/kg

Compute net work

W_{net} = q_{a} - q_{r}

       = 3381  kJ/kg - 2232 kJ/kg

       = 1150 kJ/kg

Compute power produced by the cycle

mass flow rate = m =  1.74 kg/s

W_{net} = 1150 kJ/kg

P = m * W_{net}

  = 1.74 kg/s * 1150 kJ/kg

  = 2001 kW

Compute rate of heat transfer in the reheater

Q = m * ( h₅ - h₄ )

   =  1.74 kg/s * 655

   =  1140 kW

Compute Thermal efficiency of this system

μ_{t} = 1 - q_{r} /  q_{a}

   = 1 - 2232 kJ/kg / 3381  kJ/kg

   = 1 - 0.6601

   = 0.34

   = 34%

7 0
3 years ago
One kilogram of water fills a 150-L rigid container at an initial pressure of 2 MPa. The container is then cooled to 40∘C. Deter
lukranit [14]

The pressure of water is 7.3851 kPa

<u>Explanation:</u>

Given data,

V = 150×10^{-3} m^{3}

m = 1 Kg

P_{1} = 2 MPa

T_{2}  = 40°C

The waters specific volume is calculated:

v_{1} = V/m

Here, the waters specific volume at initial condition is v_{1}, the containers volume is V, waters mass is m.

v_{1} = 150×10^{-3} m^{3}/1

v_{1} = 0.15 m^{3}/ Kg

The temperature from super heated water tables used in interpolation method between the lower and upper limit for the specific volume corresponds 0.15 m^{3}/ Kg and 0.13 m^{3}/ Kg.

T_{1}= 350+(400-350) \frac{0.15-0.13}{0.1522-0.1386}

T_{1} = 395.17°C

Hence, the initial temperature is 395.17°C.

The volume is constant in the rigid container.

v_{2} = v_{1}= 0.15 m^{3}/ Kg

In saturated water labels for T_{2}  = 40°C.

v_{f} = 0.001008 m^{3}/ Kg

v_{g} = 19.515 m^{3}/ Kg

The final state is two phase region v_{f} < v_{2} < v_{g}.

In saturated water labels for T_{2}  = 40°C.

P_{2} = P_{Sat} = 7.3851 kPa

P_{2} = 7.3851 kPa

7 0
3 years ago
Which branch of engineering most closely relates to mechanical engineering?
Rus_ich [418]

Answer:

C

Explanation:

I COULD be wrong, i'm not sure but im confident its c

4 0
3 years ago
In order to avoid a rollover, what is the highest degree incline one should mow on? 10-degree incline 5-degree incline 30-degree
ser-zykov [4K]

Answer: B: 20-degree incline

Explanation:

A tractor user should avoid slopes of more than 20 degrees in order to avoid rollovers

6 0
3 years ago
Other questions:
  • The steel water pipe has an inner diameter of 12 in. and a wall thickness of 0.25 in. If the valve A is closed and the water pre
    10·1 answer
  • 11 Notează, în caiet, trăsăturile personajelor ce se pot
    13·1 answer
  • Refrigerant-134a enters a diffuser steadily as saturated vapor at 600 kPa with a velocity of 160 m/s, and it leaves at 700 kPa a
    10·2 answers
  • 2. The initially velocity of the box and truck is 60 mph. When the truck brakes such that the deceleration is constant it takes
    12·1 answer
  • Am i eating ramon nooddles rn
    10·2 answers
  • Which engineers are requried to have a PE (professional engineer) license?
    13·2 answers
  • The following sentence can be categorized as what stage in the Scientific Method: Abraham notices that Saharan desert ants will
    6·1 answer
  • What is an air mass?​
    5·2 answers
  • Trapezoidal screw press project
    6·1 answer
  • Their game off badminton is always on Tuesday
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!