1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Korolek [52]
3 years ago
11

Explain why the life cycle of a star can be compared to the life style of a human

Physics
1 answer:
Vladimir79 [104]3 years ago
6 0
A star is born when clouds of dust and elements are gathered together in a certain space due to gravity, more and more mass and therefore pressure builds. When the pressure becomes enough to overcome the electronic repulsive force between two hydrogen nuclei, they are forced together and massive amounts of energy are given off forming helium atoms. This energy is then used to fuse other nuclei together. This could be compared to the way human life starts, where instead of 2 nuclei joining together to start a life cycle, two gametes, or sex cells are joined together. Also at the start of both a star and persons life, we are weak and we gain strength until we reach the height of our existence, then humans slowly become less efficient at doing what they do until eventually they cannot sustain themselves any further.
You might be interested in
Which would have a longer vector arrow?
Feliz [49]

Answer: d

Explanation:

Did you actually try to answer the question its obviously d they all have same miles per hour as 100 so there would be nothing different so it would be d.

5 0
3 years ago
A turtle and a rabbit are in a 150 meter race. The rabbit decides to give the turtle a 1 minute head start. The turtle moves at
yan [13]

Answer:

a) s_{T} = 30\,m, b) t = 5\,min, c) \Delta t = 6.667\,s, d) \Delta s_{R} = 33.333\,m, e) t' = 11.667\,s, f) The rabbit won the race.

Explanation:

a) As turtle moves at constant speed, its position is determined by the following formula:

s_{T} = v_{T}\cdot t

Where:

t - Time, measured in seconds.

v_{T} - Velocity of the turtle, measured in meters per second.

s_{T} - Position of the turtle, measured in meters.

Then, the position of the turtle when the rabbit starts to run is:

s_{T} = \left(0.5\,\frac{m}{s} \right)\cdot (60\,s)

s_{T} = 30\,m

The position of the turtle when the rabbit starts to run is 30 meters.

b) The time needed for the turtle to finish the race is:

t = \frac{s_{T}}{v_{T}}

t = \frac{150\,m}{0.5\,\frac{m}{s} }

t = 300\,s

t = 5\,min

The time needed for the turtle to finish the race is 5 minutes.

c) As rabbit experiments a constant acceleration until maximum velocity is reached and moves at constant speed afterwards, the time required to reach such speed is:

v_{R} = v_{o,R} + a_{R}\cdot \Delta t

Where:

v_{R} - Final velocity of the rabbit, measured in meters per second.

v_{o,R} - Initial velocity of the rabbit, measured in meters per second.

a_{R} - Acceleration of the rabbit, measured in \frac{m}{s^{2}}.

\Delta t - Running time, measured in second.

\Delta t = \frac{v_{R}-v_{o,R}}{a_{R}}

\Delta t = \frac{10\,\frac{m}{s}-0\,\frac{m}{s}}{1.50\,\frac{m}{s^{2}} }

\Delta t = 6.667\,s

The time taken by the rabbit to reach maximum speed is 6.667 s.

d) On the other hand, the position reached by the rabbit when maximum speed is reached is determined by the following equation of motion:

v_{R}^{2} = v_{o,R}^{2} + 2\cdot a_{R}\cdot \Delta s_{R}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

\Delta s_{R} = \frac{v_{R}^{2}-v_{o,R}^{2}}{2\cdot a_{R}}

Where \Delta s_{R} is the travelled distance of the rabbit from rest to maximum speed.

\Delta s_{R} = \frac{\left(10\,\frac{m}{s} \right)^{2}-\left(0\,\frac{m}{s} \right)^{2}}{2\cdot \left(1.50\,\frac{m}{s^{2}} \right)}

\Delta s_{R} = 33.333\,m

The distance travelled by the rabbit from rest to maximum speed is 33.333 meters.

e) The time required for the rabbit to finish the race can be determined by the following expression:

t' = \frac{\Delta s_{R}}{v_{R}}

t' = \frac{150\,m-33.333\,m}{10\,\frac{m}{s} }

t' = 11.667\,s

The time required for the rabbit from rest to maximum speed is 11.667 seconds.

f) The animal with the lowest time wins the race. Now, each running time is determined:

Turtle:

t_{T} = 300\,s

Rabbit:

t_{R} = 60\,s + 6.667\,s + 11.667\,s

t_{R} = 78.334\,s

The rabbit won the race as t_{R} < t_{T}.

7 0
3 years ago
what is the magnitude of the gravitational force acting on the earth due to the sun? express your answer in newtons.
Alborosie

The gravitational force the sun experiences from the earth is 3.48×10²²N, which is exactly the same as the force the sun experiences from the earth.

  • Gravity is a force that develops as a result of the attraction between mass-containing objects. The mass of the object has a direct relationship to the strength of this attraction. r equals the separation of two objects.

F = G (M₁M₂)/r²

Where, F  the gravitational force

G=6.67×10⁻¹¹Nm²kg⁻² gravitational constant

M₁=5.98×10²⁴kg  mass of earth

M₂= 1.99×10³⁰ kg the mass of the sun

r =15×10¹⁰ m is the distance between sun and earth

Putting all the values in above equation,

F = 6.67×10⁻¹¹Nm²kg⁻²(5.98×10²⁴kg 1.99×10³⁰ kg)/15×10¹⁰ m

On solving the above equation we get,

F = 3.48×10²²N

To know more about gravitational force

brainly.com/question/12830265

#SPJ4

5 0
1 year ago
PLZ HELP MEEEEEEEEE ASAP
mafiozo [28]
The answer is “Impulse acting on it” according to the impulse-momentum theorem.
6 0
3 years ago
A foot player runs 1.6m/s and has a KE of 790 J. What is his mass?
Mariana [72]
The equation for kinetic energy is,

Ke = (1/2)mv^2.

You're given a kinetic energy of 790 joules, and a speed of 1.6 m/s. Plugging these values into the equation, we get,

790 = (1/2)(1.6)^2(m).

Solving for m, we get,

m = (790)/(0.5(1.6)^2).

I'll let you crunch out those numbers for yourself :D

If you have any questions, feel free to ask. Hope this helps!
3 0
3 years ago
Other questions:
  • According to Newton’s First Law of Motion, if a ball is rolled in a straight line in an open field, what will happen to the ball
    5·1 answer
  • If you shine red light at a green plant and green light at a green plant, knowing that a plant must absorb light to grow, which
    6·1 answer
  • A 1.5-m length of straight wire experiences a maximum force of 1.6 N when in a uniform magnetic field that is 1.8 T. 1) What cur
    10·1 answer
  • Making payments to a victim in order to repay them for losses they incurred during or as a result of the crime is called
    15·1 answer
  • 3.Cuanto Calor pierden 514 ml de agua si su temperatura desciende de 12°C a 11°C. Expresa el resultado en calorias.
    11·1 answer
  • A(n)... is a material that takes in a wave when the wave hits it
    8·1 answer
  • Global winds move warm air toward the _____.
    6·2 answers
  • A crazy dog runs at a constant speed of 19.85 mi/hr for 6.09 min. How far does the dog travel during this time period?
    10·1 answer
  • A 0.250 kg car rest rolls down a frictionless incline from a starting height of 0.75 m what is the final velocity of the car? SH
    10·1 answer
  • I need help with problem C, finding the area of the accel. v time graph
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!