Answer:
Fluorine is the most reactive element
Answer:
Explanation:
A.the direction of induced current will be clockwise
B: Changing 18cm and 6.8cm into 0.18m and 0.68
2.5
Divide them both by 2 to find the radius . Now we have 0.09 and .034m.
Now use Φ=(π*0.09^2)(.75 T)cos0 and the 0.019wb
(π*0.034^2)(.75 T)cos0 and the 0.00272wb
ow use ε=-N(ΔΦ/Δt)
For ΔΦ, 0.091-0.0027=0.0883
C.
To find the current, use I=ε/R
0.0883/2.5= 0.035A
Answer:
B.
Explanation:
The sound waves are compromised. It decrompesses each time which makes the sound gets lower and lower.
<u>Answer:</u>
<em>1. A NaCl solution with a concentration of 50g/100mL of water at 40°C:</em> The NaCl solution with a given concentration is saturated at this temperature .As the temperature increases the solution will more dissolves.
<em>2. A sugar solution with a concentration of 200g/100mL of water at 40°C: </em>The sugar solution with a given concentration is saturated at this temperature. As the temperature increases the solution will more dissolves.
<em>3. A sugar solution with a concentration of 240g/100mL of water at 40°C:</em> The sugar solution with a given concentration is saturated at given temperature.
In Burglar alarm, LDR acts an AND gate.
Answer: C
Explanation
The LDR is light dependent resistor. The principle used in the working of LDR is that the resistance is inversely proportional to the intensity of light falling on the diode.
In burglar alarm, LDR diode is combined with an IC 555.
Normally an LED source is made to be incident on the LDR diode with same intensity such that the resistance will be maintained constant.
As the LDR is connected with IC, the voltage will be high when light is falling on the diode.
The IC will give only two output states that is high and low. This confirms that LDR in burglar alarm act as AND gate.
As the thief enters and crosses the LED light, the intensity of the light falling on the diode will decrease leading to decrease in the voltage which will cause the alarm to beep.