Answer:
Left
Explanation:
The force is applied opposite of the acceleration.
Answer:
76969.29 W
Explanation:
Applying,
P = F×v............. Equation 1
Where P = Power, F = force, v = velocity
But,
F = ma.......... Equation 2
Where m = mass, a = acceleration
Also,
a = (v-u)/t......... Equation 3
Given: u = 0 m/s ( from rest), v = 12.87 m/s, t = 3.47 s
Substitute these values into equation 3
a = (12.87-0)/3.47
a = 3.71 m/s²
Also Given: m = 1612 kg
Substitute into equation 2
F = 1612(3.71)
F = 5980.52 N.
Finally,
Substitute into equation 1
P = 5980.52×12.87
P = 76969.29 W
Answer:
(b) The electrons, because they have the smaller momentum and, hence, the larger de Broglie wavelength
Explanation:
de Broglie wavelength λ = h / m v
Since both electrons and protons have same velocity , momentum mv will be less for electrons because mass of electron is less .
for electron , momentum is less so . Therefore de Broglie wavelength λ will be more for electrons .
Amount of diffraction that is angle of diffraction is proportional to λ
Therefore electrons having greater de Broglie wavelength will show greater diffraction.
<span>A. frustration-aggression theory.
Good Luck!!</span>
<u>Answer:</u>
Lead
<u>Explanation:</u>
To get the density of the material, the formula would be:
mass divided by volume which is given by
.
Here in this problem, we are given a mass of
which occupies a volume of
.
So plugging the data in the above formula to find the density:
Density =
From the table, we can see that the material is Lead which has a density of 11.3c/cm^3.