Answer:
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Explanation:
The impedance of a series circuit is
Z₀² = R² + (X_L-X_C) ²
when we place another resistor in series the initial resistance impedance changes to
Z² = (R + R₂) ² + (X_L - X_C) ²
let's analyze this expression
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Answer:
a) 1.6*10^21 Joules.
b) 40,000
Explanation:
part a )
maximum destructive energy that can be released is the case when all the kinetic energy of the asteroid is consumed.
therefore E = 1/2 m v^2
m= density * volume
= 3100* (4/3* pi * 1000^3 ) = 12978666666666.67 kg
given v = 16000m/s
therefore
E= 1/2 * 12978666666666.67 * 16000 * 16000
= 1.6 x 10^21 Joules!
part B)
each bomb is capable of 4 x 10^16 joules
therefore no of bombs that are needed to produce the required energy are
1.6 x 10^21 / 4 x 10^16 = 40,000
that is 40,000 such nuclear bombs are required!
I am pretty sure its B i hope i helped ;p but sry if i got u wrong
Answer:
A) ΔV = 1.237 V
B) K.E = 1.237 eV
Explanation:
B)
The initial kinetic energy of the electron is given by the following formula:

where,
K.E = Kinetic Energy of electron = ?
m = mass of elctron = 9.1 x 10⁻³¹ kg
v = speed of electron = 660000 m/s
Therefore,

K.E = 1.98 x 10⁻¹⁹ J
K.E = (1.98 x 10⁻¹⁹ J)(
)
<u>K.E = 1.237 eV</u>
A)
The energy applied by the potential difference must be equal to the kinetic energy of the electron, in order to stop it:

where,
e = charge on electron = 1.6 x 10⁻¹⁹ C
Therefore,

<u>ΔV = 1.237 V</u>