Answer:
C. An external downward field is created or an external downward field is removed
Explanation:
As we can see that from the attached figure that the induced current would be counter clockwise. So the field occur because of induced current i.e. out of page. This represent that the current is induced in order to rise the flux out of the direction of the page
Therefore because of the external field, the field out of page & flux would be reducing or the external upward field is eliminated
So option C is correct
Answer:
the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Explanation:
Given that;
speed of car V = 120 km/h = 33.3333 m/s
Reaction time of an alert driver = 0.8 sec
Reaction time of an alert driver = 3 sec
extra time taken by sleepy driver over an alert driver = 3 - 0.8 = 2.2 sec
now, extra distance that car will travel in case of sleepy driver will be'
S_d = V × 2.2 sec
S_d = 33.3333 m/s × 2.2 sec
S_d = 73.3333 m
hence, number of car of additional car length n will be;
n = S_n / car length
n = 73.3333 m / 5m
n = 14.666 ≈ 15
Therefore, the number of additional car lengths approximately it takes the sleepy driver to stop compared to the alert driver is 15
Answer:
He is gaining kinetic energy and losing potential energy
Explanation:
Answer:
Velocity of airplane is 500 km/h
Velocity of wind is 40 km/h
Explanation:
= Velocity of airplane in still air
= Velocity of wind
Time taken by plane to travel 1150 km against the wind is 2.5 hours

Time taken by plane to travel 450 km against the wind is 50 minutes = 50/60 hours

Subtracting the two equations we get

Applying the value of velocity of wind to the first equation

∴ Velocity of airplane in still air is 500 km/h and Velocity of wind is 40 km/h