Buffers neutralize the acid and the bases
Answer:
The magnitude of the magnetic field B at the center of the loop is 5.0272 x 10⁻⁴ T.
Explanation:
Given;
Radius of circular loop, R = 3.00 cm = 0.03 m
Current in the loop, I = 12.0 A
Magnetic field at the center of circular loop is given as;
B = μ₀I / 2R
Where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
R is the radius of the circular loop
I is the current in the loop
Substitute the given values in the above equation and calculate the magnitude of the magnetic field;
B = (4π x 10⁻⁷ x 12)/ 0.03
B = 5.0272 x 10⁻⁴ T
Therefore, the magnitude of the magnetic field B at the center of the loop is 5.0272 x 10⁻⁴ T.
Answer:
2.84 m/s
Explanation:
At the top position of the circular trajectory, the normal reaction is zero:
N = 0
So it means that the only force that is providing the centripetal force is the gravitational force (the weight of the bucket). Therefore we have:

where
m is the mass of the water bucket
g = 9.8 m/s^2 is the acceleration of gravity
v is the speed of the bucket
r = 0.824 m is the radius of the circle
Solving for v,

Sound source is at rest, you are moving with velocity v, f = frequency, c = speed of sound:
f = f0(1 + v/c)
115 = 100(1 + v/343)
115 = 100 + 100v/343
15 = 100v/343
v = 15*343/100
<span>
v = 51,45 m/s </span>