Momentum is a term used to quantify the motion of an object has. It is calculated as the the product of the object's mass and the velocity. It is expressed as:
Momentum = m x v
Momentum = 50 kg x 5 m/s
Momentum = 250 kg m/s
Therefore, the correct answer is the last option.
g Generally the accepted value of acceleration due to gravity is 9.801 
as per the question the acceleration due to gravity is found to be 9.42
in an experiment performed.
the difference between the ideal and observed value is 0.381.
hence the error is -
=3.88735 percent
the error is not so high,so it can be accepted.
now we have to know why this occurs-the equation of time period of the simple pendulum is give as-![T=2\pi\sqrt[2]{l/g}](https://tex.z-dn.net/?f=T%3D2%5Cpi%5Csqrt%5B2%5D%7Bl%2Fg%7D)

As the experiment is done under air resistance,so it will affect to the time period.hence the time period will be more which in turn decreases the value of g.
if this experiment is done in a environment of zero air resistance,we will get the value of g which must be approximately equal to 9.801 
Density I'm not sure
volume unchanged
mass unchanged
shape- water
<h2>
Answer: Pressure</h2>
<u>Pressure</u> is the force
exerted by a gas, a liquid or a solid on a surface (or area)
.
Its unit according to the International System of Units is Pascal
which is equal to
and its formula is:
Answer:
Angular acceleration = 5 rad /s ^2
Kinetic energy = 0.391 J
Work done = 0.391 J
P =6.25 W
Explanation:
The torque is given as moment of inertia × angular acceleration
angular acceleration = torque/ moment of inertia
= 10/2= 5 rad/ s^2
The kinetic energy is = 1/2 Iw^2
w = angular acceleration/time
=5/8= 0.625 rad /s
1/2 × 2× 0.625^2
=0.391 J
The work done is equal to the kinetic energy of the motor at this time
W= 0.391 J
The average power is = torque × angular speed
= 10× 0.625
P = 6.25 W