add the numbers from the three sliders to determine that mass of an object
The accurate about the planet’s climate system is the wind
because heating near the equator blows the wind to drive the convection cells in the atmosphere, and the friction created by the rotation of the spherical planet in the atmosphere causes the wind to appear to bend left or right across the surface of the planet. ..
The climate system is a highly complex global system consisting of five major components: the atmosphere, the ocean, the cryosphere (cryosphere), the land surface, the biosphere, and the interactions between them.
Solar energy drives the climate by heating the surface of the earth unevenly. Ice also reflects incoming sunlight, further cooling the poles. Temperature differences move the ocean and atmosphere as they work together to disperse heat throughout the globe.
Learn more about the planet’s climate system here:brainly.com/question/15351986
#SPJ4
Answer:
proportional to the current in the wire and inversely proportional to the distance from the wire.
Explanation:
The magnetic field produced by a long, straight current-carrying wire is given by:

where
is the vacuum permeability
I is the current intensity in the wire
r is the distance from the wire
From the formula, we notice that:
- The magnitude of the magnetic field is directly proportional to I, the current
- The magnitude of the magnetic field is inversely proportional to the distance from the wire, r
Therefore, correct option is
proportional to the current in the wire and inversely proportional to the distance from the wire.
Answer:
The least uncertainty in the momentum component px is 1 × 10⁻²³ kg.m.s⁻¹.
Explanation:
According to Heisenberg's uncertainty principle, the uncertainty in the position of an electron (σx) and the uncertainty in its linear momentum (σpx) are complementary variables and are related through the following expression.
σx . σpx ≥ h/4π
where,
h is the Planck´s constant
If σx = 5 × 10⁻¹²m,
5 × 10⁻¹²m . σpx ≥ 6.63 × 10⁻³⁴ kg.m².s⁻¹/4π
σpx ≥ 1 × 10⁻²³ kg.m.s⁻¹
Answer:
P = 14700 J
Explanation:
Given that,
Mass of a piano, m = 75 kg
It is delivered throughout the window of a 6th story apartment which is 20 m above the ground.
We need to find the potential energy of the piano. It is given by :
P = mgh
Putting all the values,
P = 75 kg × 9.8 m/s² × 20 m
P = 14700 J
So, the potential energy of the piano is 14700 J.