The acceleration of gravity is 9.8 m/s² . That means that a falling object
is always falling 9.8 m/s faster than it was falling 1 second earlier.
If an object is not slowed by air resistance, and has far enough to go
so that it's still falling after three whole seconds, then at the end of
three seconds it's falling at
(9.8 m/s²) x (3 sec) = 29.4 m/s
Answer:
Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all - option A
Explanation:
Assuming that the length of the magnet is much smaller than the separation between it and the charge. As a result of magnetic interaction (i.e., ignore pure Coulomb forces) between the charge and the bar magnet, the magnet will not experience any torque at all; the reason being that: no magnetic field is being produced by a charge that is static. Only a moving charge can produce a magnetic effect. And the magnet can not have any torque due to its own magnetic lines of force.
Answer:
A) The wave that travels through the rail reaches the microphone first.
B) separation in time between the arrivals of the two pulses is 0.01539 seconds.
Explanation:
Detailed explanation and calculation is shown in the image below