Answer:
Explanation:
v = u +at
u = 0
a = 2.3 m /s²
t = 20 s
v = 2.3 x 20
= 46 m /s
Distance covered under acceleration of 2.3 m/s²
s = ut + 1/2 at²
= 0 + .5 x 2.3 x 20²
= 460 m
After that it moves under free fall ie g acts on it downwards .
v² = u² - 2gh , h is height moved by it under free fall
0 = 46² - 2 x 9.8 h
h = 107.96 m
Total height attained
= 460 + 107.96
= 567.96 m
b ) At its highest point ,it stops so its velocity = 0
c ) rocket's acceleration at its highest point = g = 9.8 downwards .
At highest point , it is undergoing free fall so its acceleration = g
If the moon was hit by an asteroid there would be a crater mark and possible movement.
Inductive reactance (Z) = ω L = 2Πf L = (2Π) (12,000) (L)
I = V / Z
4 A = 16v / (24,000Π L)
Multiply each side by (24,000 Π L):
96,000 Π L = 16v
Divide each side by (96,000 Π) :
L = 16 / 96,000Π = 5.305 x 10⁻⁵ Henry
L = 53.05 microHenry
Answer: D.) electromagnetic induction
Explanation: Electroctromagnetic induction may be explained as a process whereby electric current is induced or produced by difference in potential resulting from the movement of conductor across a magnetic field.
In simple terms, an electromotive force is induced when a magnet is moved through a conducting loop.
The electromotive force produced by moving a magnet through a conducting loop can be represented by the relation:
E = - N (dΦ / dt)
Where E = electromotive force in voltage
N = number of loop in conductor
dΦ = change in magnetic Flux
dt = change in time