Answer:
The final velocity of the thrower is
and the final velocity of the catcher is
.
Explanation:
Given:
The mass of the thrower,
.
The mass of the catcher,
.
The mass of the ball,
.
Initial velocity of the thrower, 
Final velocity of the ball, 
Initial velocity of the catcher, 
Consider that the final velocity of the thrower is
. From the conservation of momentum,

Consider that the final velocity of the catcher is
. From the conservation of momentum,

Thus, the final velocity of thrower is
and that for the catcher is
.
Answer: The box was moving with a velocity of 0.256m/s when it hit the spring
Explanation: Please see the attachments below
Answer:
The first law of thermodynamics, also known as Law of Conservation of Energy, states that energy can neither be created nor destroyed; energy can only be transferred or changed from one form to another. For example, turning on a light would seem to produce energy; however, it is electrical energy that is converted. Nothing happens to the energy. It does not change form, since energy has no form. ... If the energy was moving, it gets stored or re-transmitted elsewhere. Using energy means controlling its movement, rather than consuming it.
Answer:

Explanation:
Given that
At X=0 V=Vo
At X=X1 V=0
As we know that friction force is always try to oppose the motion of an object. It means that it provide acceleration in the negative direction.
We know that



So the friction force on the box
Ff= m x a

Where m is the mass of the box.
Answer:
Dont worry ,
One day you will find the love of your life
Explanation: