The freezing point of the water is 0 C , and it equals to 273 K
Then, To convert from Kelvins degrees to Celsius degrees we use the relation

Also,

The answer is volt for this question.
I hope is correct if not I’m sorry.
Answer:
t = 16.94 s
Explanation:
t is the time passes before police catch the speeder
speed of speeder Vo = V = 23.3 m/s
T = t
Police Info
Vo = 0 m/s
a = 2.75 m/s^2
t = t
Now,
displacement of the police car = displacement of the speeder.
x_{police} = Vo *t + 1/2 at^2
since Vo = 0
x police = 1/2 at^2
x police = 1/2 (2.75)(t)^2
Now the displacement of speeder is
x_{speeder} = Vt
x_{speeder} = 23.3 t
x_{speeder} = x_{police}
23.3 t = 1/2 * 2.75 t^2
23.3 t = 1.375 t^2
t = 23.3\1.375
t = 16.94
t = 16.94 s
Answer:
d = 6.43 cm
Explanation:
Given:
- Speed resistance coefficient in silicon n = 3.50
- Memory takes processing time t_p = 0.50 ns
- Information is to be obtained within T = 2.0 ns
Find:
- What is the maximum distance the memory unit can be from the central processing unit?
Solution:
- The amount of time taken for information pulse to travel to memory unit:
t_m = T - t_p
t_m = 2.0 - 0.5 = 1.5 ns
- We will use a basic relationship for distance traveled with respect to speed of light and time:
d = V*t_m
- Where speed of light in silicon medium is given by:
V = c / n
- Hence, d = c*t_m / n
-Evaluate: d = 3*10^8*1.5*10^-9 / 3.50
d = 0.129 m 12.9 cm
- The above is the distance for pulse going to and fro the memory and central unit. So the distance between the two is actually d / 2 = 6.43 cm