Answer:
T = 120.3 N
Explanation:
Since, the tension in the rope is acting against both the centripetal force and the weight of the stone. As both act downward towards center of the circle and tension acts towards point of support that is upward. So, tension will be equal to the sum of centripetal force and weight of the stone:
Tension = Centripetal Force + Weight of Stone
T = mv²/r + mg
where,
m = mass of stone = 5.31 kg
r = radius of circle = length of string = 2.99 m
g = 9.8 m/s²
Therefore,
T = (5.31 kg)(6.2 m/s)²/(2.99 m) + (5.31 kg)(9.8 m/s²)
T = 68.27 N + 52.03 N
<u>T = 120.3 N</u>
Answer:
C. The lower legs are levers, and the knees are fulcrums. The ankles hold the loads.
Explanation:
Answer:
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points,
Explanation:
To resolve the debate, it must be shown that the two have part of the reason, the space or distance between the two points divided by time is the average speed between the points.
v_average = (d₂-d₁) / Δt
this average velocity is not necessarily the velocity of the extreme points, in the only case that it is so is when there is no acceleration.
Therefore neither of them is right.
Answer:
To write the general formula for an acid, we fix one atom which is hydrogen because this atom is common to all the acids. General formula for acid is written by HX. where H represents Hydrogen atom.
Explanation:
I attached a picture of the diagram associated with this question.
Now,
When we check the vertical components of the tension in the rope, we will find that we have two equal components acting upwards.
These two components support the weight and each of them has a value of TcosΘ
The net force acting on the body is zero.
Fnet=Force of tension acting upwards-Force due to weight acting downwards
0 = 2TcosΘ -W
W = 2TcosΘ
T = W / 2cosΘ