Answer:
Part a)

Part b)

Part C)

Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Explanation:
Part a)
As we know that car A moves by distance 6.1 m after collision under the frictional force
so the deceleration due to friction is given as



now we will have




Part b)
Similarly for car B the distance of stop is given as 4.4 m
so we will have


Part C)
By momentum conservation we will have



Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Answer:
27.8 mph
Explanation:
May I have brainliest please? :)
Answer:
When work is being done, the practie of labor is being performed. When work isn't being completed, this is a sign of procrastination.
Explanation:
In the answer.
Answer:OB=58.3m
Explanation:
So here cow wanders 30m in north and turns 22 degrees in right side and moves 40m more, as shown in figure given.
now take the starting point as a origin such that cow moves in x-y co-ordinate axis.
As shown in figure length OA is the length when cow moves in north or y direction. Later she takes 22 degrees turn to right and moves 40m more.
So the final displacement is the length of cow from the origin that is length OB.
now co-ordinates of B are [40cos22°,40sin22°+30] i.e [37.084,44.984]
now displacement of cow= length of OB
= ![\sqrt{[37.084]^{2}+[44.984]^{2} }](https://tex.z-dn.net/?f=%5Csqrt%7B%5B37.084%5D%5E%7B2%7D%2B%5B44.984%5D%5E%7B2%7D%20%20%7D)
=
OB =