Answer:
The maximum theoretical height that the pump can be placed above liquid level is 
Explanation:
To pump the water, we need to avoid cavitation. Cavitation is a phenomenon in which liquid experiences a phase transition into the vapour phase because pressure drops below the liquid's vapour pressure at that temperature. As a liquid is pumped upwards, it's pressure drops. to see why, let's look at Bernoulli's equation:

(
stands here for density,
for height)
Now, we are assuming that there aren't friction losses here. If we assume further that the fluid is pumped out at a very small rate, the velocity term would be negligible, and we get:


This means that pressure drop is proportional to the suction lift's height.
We want the pressure drop to be small enough for the fluid's pressure to be always above vapour pressure, in the extreme the fluid's pressure will be almost equal to vapour pressure.
That means:

We insert that into our last equation and get:

And that is the absolute highest height that the pump could bear. This, assuming that there isn't friction on the suction pipe's walls, in reality the height might be much less, depending on the system's pipes and pump.
Answer:
a)W=12.62 kJ/mol
b)W=12.59 kJ/mol
Explanation:
At T = 100 °C the second and third virial coefficients are
B = -242.5 cm^3 mol^-1
C = 25200 cm^6 mo1^-2
Now according isothermal work of one mole methyl gas is
W=-
a=
b=
from virial equation

And

a=
b=
Now calculate V1 and V2 at given condition

Substitute given values
= 1 x 10^5 , T = 373.15 and given values of coefficients we get

Solve for V1 by iterative or alternative cubic equation solver we get

Similarly solve for state 2 at P2 = 50 bar we get

Now

a=241.33
b=30780
After performing integration we get work done on the system is
W=12.62 kJ/mol
(b) for Z = 1 + B' P +C' P^2 = PV/RT by performing differential we get
dV=RT(-1/p^2+0+C')dP
Hence work done on the system is

a=
b=
by substituting given limit and P = 1 bar , P2 = 50 bar and T = 373 K we get work
W=12.59 kJ/mol
The work by differ between a and b because the conversion of constant of virial coefficients are valid only for infinite series
The displacement ∆S of the particle during the interval from t = 2sec to 4sec is; 210 sec
<h3>How to find the displacement?</h3>
We are given the velocity equation as;
s' = 40 - 3t²
Thus, the speed equation will be gotten by integration of the velocity equation to get;
s = ∫40 - 3t²
s = 40t - ¹/₂t³
Thus, the displacement between times of t = 2 sec and t = 4 sec is;
∆S = [40(4) - ¹/₂(4)³] - [40(2) - ¹/₂(2)³]
∆S = 210 m
Read more about Displacement at; brainly.com/question/4931057
#SPJ1