Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C
Answer:
il(t) = e^(-100t)
Explanation:
The current from the source when the switch is closed is the current through an equivalent load of 15 + 50║50 = 15+25 = 40 ohms. That is, it is 80/40 = 2 amperes. That current is split evenly between the two parallel 50-ohm resistors, so the initial inductor current is 2/2 = 1 ampere.
The time constant is L/R = 0.20/20 = 0.01 seconds. Then the decaying current is described by ...
il(t) = e^(-t/.01)
il(t) = e^(-100t) . . . amperes
Pooping problems is not an affect
Answer:
a. Solid length Ls = 2.6 in
b. Force necessary for deflection Fs = 67.2Ibf
Factor of safety FOS = 2.04
Explanation:
Given details
Oil-tempered wire,
d = 0.2 in,
D = 2 in,
n = 12 coils,
Lo = 5 in
(a) Find the solid length
Ls = d (n + 1)
= 0.2(12 + 1) = 2.6 in Ans
(b) Find the force necessary to deflect the spring to its solid length.
N = n - 2 = 12 - 2 = 10 coils
Take G = 11.2 Mpsi
K = (d^4*G)/(8D^3N)
K = (0.2^4*11.2)/(8*2^3*10) = 28Ibf/in
Fs = k*Ys = k (Lo - Ls )
= 28(5 - 2.6) = 67.2 lbf Ans.
c) Find the factor of safety guarding against yielding when the spring is compressed to its solid length.
For C = D/d = 2/0.2 = 10
Kb = (4C + 2)/(4C - 3)
= (4*10 + 2)/(4*10 - 3) = 1.135
Tau ts = Kb {(8FD)/(Πd^3)}
= 1.135 {(8*67.2*2)/(Π*2^3)}
= 48.56 * 10^6 psi
Let m = 0.187,
A = 147 kpsi.inm^3
Sut = A/d^3 = 147/0.2^3 = 198.6 kpsi
Ssy = 0.50 Sut
= 0.50(198.6) = 99.3 kpsi
FOS = Ssy/ts
= 99.3/48.56 = 2.04 Ans.