1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erma4kov [3.2K]
3 years ago
9

At one instant, a 17.0-kg sled is moving over a horizontal surface of snow at 4.10 m/s. After 6.15 s has elapsed, the sled stops

. Use a momentum approach to find the magnitude of the average friction force acting on the sled while it was moving.
Physics
1 answer:
jasenka [17]3 years ago
8 0

Answer:

force = 11.33 kg-m/s^{2}

Explanation:

given data:

sled mass = 17.0 kg

inital velocity (U) = 4.10 m/s

elapsed time (T) 6.15 s

final velocity (V) = 0

final momentum P2 = 0

Initial momentum of sledge is

P_{1}=mU

P_{1}= 17.0 * 4.10 = 69.7 kg- m/s

from newton second law of motion

F=\frac{\Delta P}{\Delta t}

F = \frac{P_{1}-P_{2}}{T}

Kgm/s^2

F = \frac{69.7-0}{6.15}= 11.33[tex]kg-m/s^{2}[/tex]

You might be interested in
The aqueduct passes under Johnson Road in Lancaster through a siphon. The maximum capacity of the aqueduct is 350 m3/s. The heig
Mariulka [41]

Answer:

D ≈ 8.45 m

L ≈ 100.02 m

Explanation:

Given

Q = 350 m³/s (volumetric water flow rate passing through the stretch of channel, maximum capacity of the aqueduct)

y₁ - y₂ = h = 2.00 m (the height difference from the upper to the lower channels)

x = 100.00 m (distance between the upper and the lower channels)

We assume that:

  • the upper and the lower channels are at the same pressure (the atmospheric pressure).
  • the velocity of water in the upper channel is zero (v₁ = 0 m/s).
  • y₁ = 2.00 m  (height of the upper channel)
  • y₂ = 0.00 m  (height of the lower channel)
  • g = 9.81 m/s²
  • ρ = 1000 Kg/m³ (density of water)

We apply Bernoulli's equation as follows between the point 1 (the upper channel) and the point 2 (the lower channel):

P₁ + (ρ*v₁²/2) + ρ*g*y₁ = P₂ + (ρ*v₂²/2) + ρ*g*y₂

Plugging the known values into the equation and simplifying we get

Patm + (1000 Kg/m³*(0 m/s)²/2) + (1000 Kg/m³)*(9.81 m/s²)*(2 m) = Patm + (1000 Kg/m³*v₂²/2) + (1000 Kg/m³)*(9.81 m/s²)*(0 m)

⇒ v₂ = 6.264 m/s

then we apply the formula

Q = v*A  ⇒   A = Q/v ⇒   A = Q/v₂

⇒   A = (350 m³/s)/(6.264 m/s)

⇒   A = 55.873 m²

then, we get the diameter of the pipe as follows

A = π*D²/4   ⇒   D = 2*√(A/π)

⇒   D = 2*√(55.873 m²/π)

⇒   D = 8.434 m ≈ 8.45 m

Now, the length of the pipe can be obtained as follows

L² = x² + h²

⇒ L² = (100.00 m)² + (2.00 m)²

⇒ L ≈ 100.02 m

6 0
3 years ago
Read 2 more answers
The driver of a car slams on the brakes, causing the car to slow down at a rate of
sdas [7]

Answer:

A. The time taken for the car to stop is 3.14 secs

B. The initial velocity is 81.64 ft/s

Explanation:

Data obtained from the question include:

Acceleration (a) = 26ft/s2

Distance (s) = 256ft

Final velocity (V) = 0

Time (t) =?

Initial velocity (U) =?

A. Determination of the time taken for the car to stop.

Let us obtain an express for time (t)

Acceleration (a) = Velocity (V)/time(t)

a = V/t

Velocity (V) = distance (s) /time (t)

V = s/t

a = s/t^2

Cross multiply

a x t^2 = s

Divide both side by a

t^2 = s/a

Take the square root of both side

t = √(s/a)

Now we can obtain the time as follow

Acceleration (a) = 26ft/s2

Distance (s) = 256ft

Time (t) =..?

t = √(s/a)

t = √(256/26)

t = 3.14 secs

Therefore, the time taken for the car to stop is 3.14 secs

B. Determination of the initial speed of the car.

V = U + at

Final velocity (V) = 0

Deceleration (a) = –26ft/s2

Time (t) = 3.14 sec

Initial velocity (U) =.?

0 = U – 26x3.14

0 = U – 81.64

Collect like terms

U = 81.64 ft/s

Therefore, the initial velocity is 81.64 ft/s

7 0
3 years ago
Which of the following will be the best condition for bread fermentation?
dezoksy [38]

Answer:

a. Wet, soft dough at 85 degrees Fahrenheit

Explanation:

Fermentation is an anaerobic process that transforms starches into simpler substances. The rising of dough is due to fermentation.

According to Harold McGee, 85°F (29°C) is the best temperature for fermenting bread dough. Temperatures below 85°F (29°C) take  much longer to ferment, and temperatures higher than that result into unpleasant flavors in the dough.

Wet, soft dough is usually more preferable because it produces a softer bread.

3 0
3 years ago
Lifting a piano into a truck is an example of doing negative work. A. True B. False
Elis [28]

Answer:

False

Explanation:

5 0
3 years ago
If we warm a volume of air, it expands. Does it then follow that if we expand a volume of air, it warms? Explain.
Ivahew [28]

Answer:

nope don't think so

Explanation:

the heat causes the molecules to move faster therefore expanding in watever it the air is in

3 0
3 years ago
Read 2 more answers
Other questions:
  • For a current to flow continuously through a circuit, the circuit must be:
    14·1 answer
  • How do electromagnetic forces work?
    8·1 answer
  • An electron is acted on by two electric forces, one of 2.7×10-14 N acting upward and a second of 5.8×10-14 N acting to the right
    7·1 answer
  • A 480 kg car moving at 14.4 m/s hits from behind another car moving at 13.3 m/s in the same direction. If the second car has a m
    15·1 answer
  • Calculate the acceleration of the car for each set of conditions using the formula a = (v2 – v1) / (t2 – t1) where v2 and v1 are
    14·2 answers
  • What can i yeet baby or toddler
    13·1 answer
  • If i punch my self and it will hurt am i weak or strong
    6·1 answer
  • How do positive charges in an electric field move?
    7·1 answer
  • Find the speed of a rock being thrown 20.5 meters (m) to the left in 4.0s.
    6·2 answers
  • A car moves with constant velocity along a straight road. Its position is x1 = 0 m at t1 = 0 s and is x2 = 32 m at t2 = 2.0 s .
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!