Power dissipation = (voltage across the component)² / (resistance of the component)
Since the resistance is in the denominator of the fraction in this formula for the
quantity of power dissipated, you can see that when the supply voltage is constant,
the smaller resistance dissipates more power.
So the <u>60w bulb</u> has lower resistance than the 40w bulb.
Answer:
only thing I think of when I see that is 'Just Wondering'
Explanation:
Answer:
750 nm
Explanation:
= separation of the slits = 1.8 mm = 0.0018 m
λ = wavelength of monochromatic light
= screen distance = 4.8 m
= position of first bright fringe =
= order = 1
Position of first bright fringe is given as


λ = 7.5 x 10⁻⁷ m
λ = 750 nm
<span>a. KE in electron volts is 1020 eV.
b. KE in Joules is e(1020) = (1.6022E-19)(1020) = 1.634E-16
c. KE = (1/2)mv^2, so v = sqrt[2*KE/m] = 18.94E6 m/s
note: m is the mass of an electron = 9.109e-31 kg
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>
s = displacement; u = initial velocity; t = time of motion