Albert Einstein came up with the theory of general relativity to explain the law of gravity, whilst Newton's three laws of gravity is universal. To understand this further, it's best to understand it in scientific terms.
The weird thing about science is that words that are used in a colloquial sense may have a completely opposite definition in scientific terms.
A law in science is a constant and invariable statement that is universal. Wherever you may be in the universe, Newton's three laws of gravity will always be applied.
The word "theory" doesn't imply conjecture or an idea someone made up after a night of drinking. In science, a theory is the highest level of certainty behind mathematical proof -- which isn't even a part of science, obviously. A theory has to be substantiated by all available evidence and contradicted by none. All theories also have to have to be falsifiable. For this reason, theories can never be proven. Einstein's theory of general relativity has great predictive power, but in some cases, the predictions aren't always constant. Theories are often revised to fit new available evidence.
To calcculate the braking force of the car moving, we use Newton's second law of motion which relates the acceleration and the force of an object moving. The force of an object moving is directly proportional to its acceleration and the proportionality constant is the mass of the object. It is expressed as:
Force = ma
Acceleration is the rate of change of the velocity of a moving object. We calculate acceleration from the velocity and the time given above.
a = (10 m/s) / 5 s = 2 m/s^2
So,
Force = ma
Force = 1000 kg ( 2 m/s^2 )
Force = 2000 kg m/s^2 or 2000 N
Answer:
(a) The magnitude of the electric dipole moment is 1.68 x 10⁻¹⁴ C.m
(b) The difference between the potential energies ΔU, is 4.6704 x 10⁻¹¹ J
Explanation:
Given;
magnitude of charge, q = 2 nC = 2 x 10⁻⁹ C
distance of separation, d = 8.4 μm = 8.4 x 10⁻⁶ m
strength of electric field, E = 1390 N/C
(a) the magnitude of the electric dipole moment
p = qd
p = (2 x 10⁻⁹ C)(8.4 x 10⁻⁶ m)
p = 1.68 x 10⁻¹⁴ C.m
(b) the difference between the potential energies for dipole orientations parallel and anti-parallel to E
ΔU = U(180) - U(0)
ΔU = 2pE
ΔU = 2(1.68 x 10⁻¹⁴ )(1390)
ΔU = 4.6704 x 10⁻¹¹ J
Answer:
3600
Explanation:
90 of 120 is 3/4 so 4800 - 1200 is 3600.