The two will fall at the same speed and reach the surface at the same time. This is because the two will experience the same gravitational acceleration on the moon. However, on the earth surface the two will land on the surface of the earth at the same time due to air resistance such that the egg will experience a higher air resistance than the hammer. On, the moon, where there is no noticeable atmosphere there is no air resistance on either object and both fall at the same speed. It is also important to note that their mass doesn't affect their speed.
Answer:
4.54
Explanation:
X+10X=50
11X=50
X=4.54#
<h2>please follow me...</h2>
Answer:
x = 25 / μ [ ft]
Explanation:
To solve this exercise we can use Newton's second law.
Let's set a reference system where the x axis is parallel to the road
Y axis
N_B + N_A - W_van - W_load = 0
N_B + N_A = W_van + W_load
X axis
fr = ma
a = fr / m
the total mass is
m = (W_van + W_load) / g
the friction force has the expression
fr = μ N_{total}
fr = μy (W_van + W_load)
we substitute
a = μ (W_van + W_load)
a = μ g
taking the acceleration let's use the kinematic relations where the final velocity is zero
v² = v₀² - 2 a x
0 = v₀² -2a x
x =
x =
x =
x = 25 / μ [ ft]
Efficiency = Power Output / Power Input
Power Input = Rate of Energy input = 44.4 MJ/kg * 5 kg/h
= 222 MJ/h
But 1 hour = 3600seconds
222 MJ/h = 222 MJ/3600s = 0.061667 MW J/s = Watts
Power input = 0.061667 MW = 61 667 W
From Efficiency = Power Output / Power Input
28% = Power Output / 61667
Power Output = 0.28 * 61667
Power Output = 17266.76 W
Power Output ≈ 17 267 W
Rate of heat rejection = Power Input - Power Output
= 61667 - 17267 = 44400 W
Rate of heat rejection = 44 400W.