Answer:
9.73 x 10⁻¹⁰ m
Explanation:
According to Heisenberg uncertainty principle
Uncertainty in position x uncertainty in momentum ≥ h / 4π
Δ X x Δp ≥ h / 4π
Δp = mΔV
ΔV = Uncertainty in velocity
= 2 x 10⁻⁶ x 3 / 100
= 6 x 10⁻⁸
mass m = 0.9 x 10⁻¹⁵ x 10⁻³ kg
m = 9 x 10⁻¹⁹
Δp = mΔV
= 9 x 10⁻¹⁹ x 6 x 10⁻⁸
= 54 x 10⁻²⁷
Δ X x Δp ≥ h / 4π
Δ X x 54 x 10⁻²⁷ ≥ h / 4π
Δ X = h / 4π x 1 / 54 x 10⁻²⁷
= 
= 9.73 x 10⁻¹⁰ m
Answer:

Explanation:
The intensity is related to the power and surface area by
. We need to calculate the surface area of a sphere of radius r=4.3ly.
Since 4.3ly is the distance light travels in 4.3 years at 299792458m/s, we can obtain it in meters by doing:

So we have:

Answer:
I think the answer is A. X: Mold Y: Cast
Explanation:
Hope that helps!!!
Answer:
i don't know if this is good for you but
Explanation:
ignoring frictional air resistance (drag) the speed on return is the same as when it left the ground (5 m/s but in the opposite direction).
Note: this points out a good reason for not firing live bullets into the air..they will return somewhere and at the same speed.
However, if you take into account the atmospheric drag the reurn speed will be somewhat smaller (but in the case of a bullet, probably still lethal.) Drag depends on many factors and is difficult to calculate.