1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
crimeas [40]
3 years ago
14

A person of mass 55 kg swings on a rope length 4 m from rest (when the rope makes an angle of 30 degrees with the vertical) and

collides perfectly inelastically with a 70 kg person on the ground when the rope is exactly vertical. Determine the maximum angle the rope makes with the vertical after the 55 kg person picks up the 70 kg person.

Physics
1 answer:
vovangra [49]3 years ago
8 0

Answer:

θ = 19.66°

Explanation:

To determine the angle that the rope makes with the vertical for the two people, you first take into account the potential energy of the first person before he swings on the rope:

U=mgh

h: distance to the ground

g: gravitational acceleration = 9.8m/s^2

m: mass of the first person = 55 kg

In the image attache below you can notice that the height h is:

h=4-4cos(30\°)=0.53m

Then, the potential energy is:

U=(55kg)(9.8m/s^2)(0.53m)=285.67J

When the first person picks up the second person (when the rope is exactly vertical), all the potential energy becomes kinetic energy. Next, when both people reaches the maximum height h' the energy must be equal to the initial potential energy of the first person:

U'=(m_1+m_2)gh'=285.67\ J

From the previous equation you can get h':

h'=\frac{285.67J}{(55kg+70kg)(9.8m/s^2)}=0.2332m

Finally, you obtain the angle between the rope at the height h,' and the vertical, by calculating the following:

h'=4-4cos(\theta)\\\\\theta=cos^{-1}(\frac{4-h'}{4})=cos^{-1}(\frac{4-0.2332}{4})=19.66\°

hence, the angle between the rope and the vertical, when the two people are in the rope is 19.66°

You might be interested in
One hazard of space travel is the debris left by previous missions. There are several thousand objects orbiting Earth that are l
MariettaO [177]

Answer:

F = 6666.7 N

Explanation:

Given that,

Mass of a chip, m = 0.1 mg

Initial speed, u = 0

Final speed,v=4\times 10^{3}\ m/s

Time of collision,t=6\times 10^{-8}\ s

We know that,

Force, F = ma

Put all the values,

F=\dfrac{m(v-u)}{t}\\\\F=\dfrac{0.1\times 10^{-6}\times (4\times 10^3-0)}{6\times 10^{-8}}\\\\F=6666.7\ N

So, the required force is 6666.7 N.

3 0
3 years ago
Chapter 21, Problem 009 Two identical conducting spheres, fixed in place, attract each other with an electrostatic force of 0.12
PilotLPTM [1.2K]

Answer:

a) -1.325 μC

b) 4.17μC

Explanation:

First, you need to know that charge is conserved. So, the adition of the charges, as there is no lost in charge, should always be the same. Also, after the wire is removed, both spheres will have the same charge, trying to find equilibrium. In summary:

q_1 + q_2 = constant\\q_1_f = q_2_f |Then\\q_1_f + q_2_f = 2q_1_f = q_1_o+q_2_o\\q_1_f = q_2_f = \frac{q_1_o+q_2_o}{2}

We know both q1f and q2f must be positive, because the negative charge at the beginning was the the smaller.

The electrostatic force is equal to:

F_e = k\frac{q_1q_2}{r^2}

K is the Coulomb constant, equal to 9*10^9 Nm^2/C^2

Now, we are told that the electrostatic force after the wire is equal to 0.0443 N:

F_e_f = k \frac{q_1_fq_2_f}{r^2} = k\frac{\frac{q_1_o+q_2_o}{2}\frac{q_1_o+q_2_o}{2}}{r^2} = k\frac{(q_1_o+q_2_o)^2}{4r^2}  \\(q_1_o+q_2_o) = \sqrt{\frac{F_e_f*4r^2}{k}} = \sqrt{\frac{0.0443N *4(0.641m)^2}{9*10^9Nm^2/C^2} } = 2.844 *10^{-6}C \\ q_1_o = 2.844*10^{-6}C - q_2_o

Originally, the force is negative because it was an attraction force, therefore, its direction was opposite to the direction of the repulsive force after the wire:

F_e_o = k\frac{q_1_oq_2_o}{r^2}\\ q_1_oq_2_o = \frac{F_e_o*r^2}{k} = \frac{-0.121N(0.641m)^2}{9*10^9Nm^2/C^2} = -5.524*10^{-12}

(2.844*10^{-6}C - q_2_o)q_2_o = -5.524*10^{-12}\\0 = q_2_o^2 - 2.844*10^{-6}q_2_o - 5.524*10^{-12}

Solving the quadratic equation:

q_2_o = 4.17*10^{-6}C | -1.325 * 10^{-6}C

for this values q_1 wil be:

q_1_o =  -1.325 *10^{-6}C | 4.17*10^{-6}C

So as you can see, the negative charge will always be -1.325 μC and the positive 4.17μC

5 0
3 years ago
What is a normal force?
Flauer [41]
Is the component perpendicular to the surface on contact  of the  contact force  <span />
3 0
3 years ago
I need help
musickatia [10]

Answer:

C

Explanation:

4 0
3 years ago
Name the blood vessels that carry blood from the upper and lower parts of your body
aev [14]
Pulmonary Arteries: Blood vessels that carry deoxygenated blood from the heart to the lungs. Superior Vena Cava: A large vein that delivers deoxygenated blood from the upper body into the heart. Hope this helps
3 0
3 years ago
Read 2 more answers
Other questions:
  • A 1200 w microwave oven transforms 1.8x10(to the power of 5) J of energy while reheating some food. Calculate how long the food
    5·1 answer
  • diving to work one morning, you get a flat tire. when using the car jack, you apply 120 N of force to the jack and the jack in t
    10·1 answer
  • What is the half life of the cobalt-57 isotope
    9·2 answers
  • If you walk eight blocks north and then three blocks south from your home what is your position compared to your home? what dist
    15·1 answer
  • A 1.0 kg object moving at 4.5 m/s has a wavelength of:
    12·1 answer
  • The overgrowth of algae on the surface of this water is caused by
    5·1 answer
  • What causes an impact crater to form?
    10·1 answer
  • When broadcasting live on social, keep in mind that the best broadcasts are ones that feel like a conversation between brand and
    10·1 answer
  • At the particle level, the weakest of the fundamental forces is:
    9·2 answers
  • A man and his dog are “walking” on flat Street. He is pulling on his stubborn dog with a force of 70 N Directed at a 30° angle f
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!