D = V1( t ) + 1/2g( t )^2
50m = 0m/s( t ) + 1/2(9.8m/s^2)*( t )^2
V1*t cancels out
50m = (4.9m/s^2)*(t)^2
50m/(4.9m/s^2) = t^2
Metres unit cancels out so we are left with s^2
10.204s^2 = t^2
Square root both sides to cancel out square
t = 3.19 s
Answer:
The work done by the weightlifter, W = 700 J
The power of the weightlifter, P = 350 watts
Explanation:
A weightlifter lifts a set of weights a vertical distance, s = 2 m
The force exerted to lift the weight, F = 350 N
The work done by the body is defined as the product of the force applied by the body to the displacement it caused.
W = F x s
= 350 N x 2 m
= 700 J
The work done by the weightlifter, W = 700 J
The time taken by the weightlifter to lift the weight, t = 2 s
The power is defined as the rate of body to do work. It is given by the equation,
P = W / t
= 700 J / 2 s
= 350 watts
Hence, the power of the weightlifter, P = 350 watts
When jumping on a trampoline, the energy changes from potential to kinetic energy constantly. when you begin to jump in the air there is kinetic energy present, and when you reach maximum height then potential energy takes over for a little bit. Then, when going back down, kinetic energy takes over again until you land on the trampoline.
Hope this helps,
Trey
Answer:
Evaporation increases with an increase in the surface area
If the surface area is increased, then the amount is of liquid that is exposed to air is larger. More molecules can escape with a wider surface area.
Explanation: