1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
inna [77]
2 years ago
10

5. Find the velocity of a train that traveled 75 km in 35 minutes. (answer

Physics
1 answer:
iogann1982 [59]2 years ago
3 0

75km=75000m

35min=2100 seconds

Velocity=Displacement/Time

=75000/2100

=750/21

=35.71 m/s

You might be interested in
What is the momentum of a 35–kilogram cart moving at a speed of 1.2 meters/second?
Alexus [3.1K]

Given:-

  • Mass of the cart (m) = 35 kg
  • Speed (consider Velocity) = 1.2 m/s

To Find: Momentum of the cart.

We know,

p = mv

where,

  • p = Momentum,
  • m = Mass &
  • v = Velocity.

Thus,

p = (35 kg)(1.2 m/s)

→ p = 42 kg m/s (Ans.)

Conclusion:-

A. ☑️ 42 kilogram - metre per second.

6 0
3 years ago
1)Light of wavelength 588.0 nm is incident on a narrow slit. The diffraction pattern is viewed on a screen 55.5 cm from the slit
Talja [164]

Answer:

These are Diffraction Grating Questions.

Q1. To determine the width of the slit in micrometers (μm), we will need to use the expression for distance along the screen from the center maximum to the nth minimum on one side:  

Given as  

y = nDλ/w                                                       Eqn 1

where  

w = width of slit  

D = distance to screen  

λ = wavelength of light  

n = order number  

Making x the subject of the formula gives,  

w = nDλ/y  

Given  

y = 0.0149 m  

D = 0.555 m  

λ = 588 x 10-9 m  

and n = 3

w = 6.6x10⁻⁵m

Hence, the width of the slit w, in micrometers (μm) = 66μm

Q2. To determine the linear distance Δx, between the ninth order maximum and the fifth order maximum on the screen

i.e we have to find the difference between distance along the screen (y₉-y₅) = Δx

Recall Eqn 1,     y = nDλ/w  

given, D = 27cm = 0.27m  

λ = 632 x 10-9 m  

w = 0.1mm = 1.0x10⁻⁴m

For the 9th order, n = 9,

y₉ = 9 x 0.27 x 632 x 10-9/ 1.0x10⁻⁴m = 0.015m

Similarly, for n = 5,

y₅ = 5x 0.27 x 632 x 10-9/ 1.0x10⁻⁴m = 0.0085m

Recall,  Δx = (y₉-y₅) = 0.015 - 0.0085 = 0.0065m

Hence, the linear distance Δx between the ninth order maximum and the fifth order maximum on the screen = 6.5mm

8 0
3 years ago
A light platform is suspended from the ceiling by a spring. A student with a mass of 90 kg climbs onto the platform. When it sto
Ilya [14]
Refer to the diagram shown.

When the student climbs onto the platform, the spring stretches by 0.82 m to reach the equilibrium position.
The mass of the student is m = 90 kg, so his weight is
mg = (90 kg)*(9.8 m/s²) = 882 N

By definition, the spring constant is
k = (882 N)/(0.82 m) = 1075.6 N/m

When the spring is stretched by x from the equilibrium position, the restoring force is
F = - k*x.

If damping is ignored, the equation of motion is
F = m * acceleration
or
m \frac{d^{2}x}{dt^{2}} = -kx \\ \frac{d^{2}x}{dt^{2}} + \frac{k}{m} x = 0

Define ω² = k/m = 11.751 => ω = 3.457.
Then the solution of the ODE is
x(t) = c₁ cos(ωt) + c₂ sin(ωt)

x'(t) = -c₁ω sin(ωwt) + c₂ω cos(ωt)
When t=0, x' =0, therefore c₂ = 0

The solution is of the form
x(t) = c₁ cos(ωt)
When t = 0, x = 0.32 m. Therefore c₁ = 0.32

The motion is
x(t) = 0.32 cos(3.457t)
The single amplitude is 0.32 m, and the double amplitude is 0.64 m.

Answer: 
0.32 m (single amplitude), or
0.64 m (double amplitude)

6 0
3 years ago
a ball is whirled on a string and then the string breaks. what causes the ball to move off in a straight line ?
katrin [286]
It would be called Inertia
7 0
3 years ago
Read 2 more answers
If the acceleration of the projective is: a = c s m/s 2 Where c is a constant that depends on the initial gas pressure behind th
Sedbober [7]

Answer:

c = 4,444.44

Explanation:

You have the following expression for the acceleration of the projectile:

a=cs   (1)

s: distance to the ground of the projectile

To find the value of the constant c you use the following formula:

v^2=v_o^2+2a \Delta s   (2)

vo: initial  velocity = 0 m/s

v: final speed = 200 m/s

Δs: distance traveled by the projectile = 3m - 1.5m = 1.5m

You replace the expression (1) into the expression (2):

v^2=2(cs)\Delta s

You do the constant c in the last equation, then you replace the values of v, s and Δs:

c=\frac{v^2}{2s\Delta s}=\frac{(200m/s)^2}{2(3m/s^2)(1.5m)}=4444.44

6 0
3 years ago
Other questions:
  • What mass of silver can be plated onto an object in 33.5 minutes at 8.70 a of current? ag (aq e- ? ag(s what mass of silver can
    14·2 answers
  • Velocity is different from speed because velocity also includes:
    11·1 answer
  • What happens when humans change the flow of water?
    13·2 answers
  • An electric fan is turned off, and its angular velocity decreases uniformly from 550 rev/min to 180 rev/min in a time interval o
    6·1 answer
  • What is the rate of heat transfer by radiation, with an unclothed person standing in a dark room whose ambient temperature is 22
    15·1 answer
  • Blocks A (mass 2.00 kg) and B (mass 6.00 kg) move on a frictionless, horizontal surface. Initially, block B is at rest and block
    11·1 answer
  • An inventor claims to have developed a resistance heater that supplies 1.2 kWh of energy to a room for each kWh of electricity i
    8·1 answer
  • The magnetic circuit below is excited by a 100-turn coil wound over the central leg. The mean length of the central leg is 5.5cm
    8·1 answer
  • Question 3 (1 point)
    15·1 answer
  • Three persons wants to push a wheel cart in the direction marked x in Fig. The two person push with horizontal forces F1 and F2
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!