Answer:
a) a = 1,865 m / s² and b) t = 8.1 s
Explanation:
a) Let's use Newton's second law to find acceleration, we can work the equation in scalar form because displacement and force have the same direction
F = m .a
a = F / m
a = 8.02 10² /4.3 10²
a = 1,865 m / s²
b) We use kinematic relationships in one dimension
vf = vo + at
vf = 0 + a t
t = vf / a
t = 15.1 / 1.865
t = 8.1 s
Answer: AAAAAAAAGGGGGHHHHJJJGSSSUUUUUUUUYCCFVGBHNJM
Explanation: YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET YEET
The distance in meters she would have moved before she begins to slow down is 11.25 m
<h3>
LINEAR MOTION</h3>
A straight line movement is known as linear motion
Given that Ann is driving down a street at 15 m/s. Suddenly a child runs into the street. It takes Ann 0.75 seconds to react and apply the brakes.
To know how many meters will she have moved before she begins to slow down, we need to first list all the given parameters.
From definition of speed,
speed = distance / time
Make distance the subject of the formula
distance = speed x time
distance = 15 x 0.75
distance = 11.25m
Therefore, the distance in meters she would have moved before she begins to slow down is 11.25 m
Learn more about Linear motion here: brainly.com/question/13665920
Answer:
what is it on? like name one of the questions
Explanation:
Answer:
= 1.75 × 10⁻⁴ m/s
Explanation:
Given:
Density of copper, ρ = 8.93 g/cm³
mass, M = 63.5 g/mol
Radius of wire = 0.625 mm
Current, I = 3A
Area of the wire,
=
Now,
The current density, J is given as
= 2444619.925 A/mm²
now, the electron density, 
where,
=Avogadro's Number

Now,
the drift velocity, 

where,
e = charge on electron = 1.6 × 10⁻¹⁹ C
thus,
= 1.75 × 10⁻⁴ m/s