The correlation coefficient of the health research institute data measures the relationship between the age and the years of the smokers
The correlation coefficient is 0.53
<h3>How to calculate the correlation coefficient</h3>
The correlation coefficient (r) is calculated as:
![r = \frac{n(\sum xy) - \sum x \sum y}{\sqrt{[n \sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7Bn%28%5Csum%20xy%29%20-%20%5Csum%20x%20%5Csum%20y%7D%7B%5Csqrt%7B%5Bn%20%5Csum%20x%5E2%20-%20%28%5Csum%20x%29%5E2%5D%5Bn%5Csum%20y%5E2%20-%20%28%5Csum%20y%29%5E2%7D%7D)
Using the given parameters, we have:
![r = \frac{20 *8249 - 1257* 116}{\sqrt{[20 * 98823 - 1257^2][20 * 836 - 116^2}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B20%20%2A8249%20-%201257%2A%20116%7D%7B%5Csqrt%7B%5B20%20%2A%2098823%20-%201257%5E2%5D%5B20%20%2A%20836%20-%20116%5E2%7D%7D)
Evaluate the exponents
![r = \frac{20 *8249 - 1257* 116}{\sqrt{[20 * 98823 - 1580049][20 * 836 - 13456}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B20%20%2A8249%20-%201257%2A%20116%7D%7B%5Csqrt%7B%5B20%20%2A%2098823%20-%201580049%5D%5B20%20%2A%20836%20-%2013456%7D%7D)
Evaluate the products
![r = \frac{164980 - 145812}{\sqrt{[1976460 - 1580049][16720 - 13456}}](https://tex.z-dn.net/?f=r%20%3D%20%5Cfrac%7B164980%20-%20145812%7D%7B%5Csqrt%7B%5B1976460%20-%201580049%5D%5B16720%20-%2013456%7D%7D)
Evaluate the differences

Evaluate the product

Evaluate the root

Evaluate the quotient

Hence, the correlation coefficient is 0.53
Read more about correlation coefficient at:
brainly.com/question/1564293
Answer:
The answer is 25% donated peanut butter
Step-by-step explanation: Easy
A = 1/2(15+7+15+7)(13)
A= 1/2(44)(13)
A = 286
answer
286
15% becomes 0.15
multiply it by 8700
0.15x8700=1305
Step-by-step explanation:
<h2>
<em><u>concept :</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10</u></em></h2><h2 /><h2>
<em><u>concept :When two lines are perpendicular, then the product of their slopes is equivalent to -1.Equation of line in the form y = mx + c have m as slope of line and c as y-intercept.Solution:Given equations of lines are4y = 5x-10or, y = (5/4)x(5/2).</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>1</em><em>)</em></h2><h2 /><h2>
<em><u>5y + 4x = 35</u></em></h2><h2 /><h2>
<em><u>5y + 4x = 35ory = (-4/5)x + 7.</u></em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em><em>(</em><em>2</em><em>)</em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1</u></em></h2><h2 /><h2>
<em><u>Let m and n be the slope of equations i and ii, respectively.Here, m = 5/4n= -4/5therefore, mx n = -1Hence, the lines are perpendicular.</u></em></h2>