Answer:
Here's what I get
Explanation:
SbCl₃ reacts with water to form slightly soluble antimony oxychloride.
SbCl₃(aq) +H₂O(ℓ) ⇌ SbOCl(s) + 2HCl(aq)
Your observation is an example of Le Châtelier's Principle in action,
The SbCl₃(aq) in your lab has enough HCl added to push the position of equilibrium to the left and keep the SbOCl in solution.
If a few drops of the SbCl₃(aq) were added to 300 mL of water, the solution would turn cloudy. The HCl would be so dilute that the position of equilibrium would lie to the right, and a cloudy precipitate of antimony oxychloride would form.
A chemical formula that indicates the kinds of atoms and the number of each kind in a molecule of a compound.
Answer:
An increase in pressure would cause less volume and vice versa. They are inversely proportional.
Explanation:
This is due to Boyle's Law (and because an increase in pressure would increase the force on the container, however, if it's a closed container, it would burst)
<em>Feel free to mark it as brainliest :D</em>
Answer:
Compound 1 is molecular
Compound 2 is ionic
Compound 3 can't really be decided
Explanation:
A molecular substance does not conduct electricity, has very low melting and boiling points and is held together by very weak intermolecular forces.
An ionic substance conducts electricity in solution or in molten state but never in the pure solid state, has a high melting and boiling point and has a dull appearance most times.
Compounds 1 shows the properties of molecular substances hence it are designated as such.
On the other hand, compound 2 shows the properties of an ionic substance and is also designated as such.
We can't really decide on compound 3 because it shows some properties of ionic substances and some properties of molecular substances.