I think the answer is c not completely sure
<span>Avogadro's number
represents the number of units in one mole of any substance. This has the value
of 6.022 x 10^23 units / mole. This number can be used to convert the number of
atoms or molecules into number of moles. We calculate as follows:
0.340 mol Br2 ( </span>6.022 x 10^23 molecules / mol ) = 2.05 x 10^23 molecules
Explanation:
Distinguish chemical substances from mixtures
Key Points
Matter can be broken down into two categories: pure substances and mixtures. Pure substances are further broken down into elements and compounds. Mixtures are physically combined structures that can be separated into their original components.
A chemical substance is composed of one type of atom or molecule.
A mixture is composed of different types of atoms or molecules that are not chemically bonded.
A heterogeneous mixture is a mixture of two or more chemical substances where the various components can be visually distinguished.
A homogeneous mixture is a type of mixture in which the composition is uniform and every part of the solution has the same properties.
Various separation techniques exist in order to separate matter, including include distillation, filtration, evaporation and chromatography. Matter can be in the same phase or in two different phases for this separation to take place.
Terms
substanceA form of matter that has constant chemical composition and characteristic properties. It is composed of one type of atom or molecule.
elementA chemical substance that is made up of a particular kind of atom and cannot be broken down or transformed by a chemical reaction.
mixtureSomething that consists of diverse, non-bonded elements or molecules.
That would be phosphorus. It’s electron configuration is 1s^2 2s^2 2p^6 3s^2 3p^3
Answer:
Option "B" is correct.
Explanation:
According to VSEPR theory, There are repulsion forces exists among the bond pair - bond pair or bond pair - lone pair of electrons. In
and
, the number of electron pairs are same but methane has all the four bond pairs where in ammonia, three bond pairs and one lone pair exists. And thus there are repulsion forces possible in between the lone pair and bond pair of electrons thus the arrangement of electron pairs around both the molecules is same or different depending up on the conditions leading to maximum repulsion.