<span>polyethylene or polythene are the main ingredients </span>
That produces hydrogen gas.
Answer: Option (B) is the correct answer.
Explanation:
Both oxygen and fluorine are period 2 elements and when we move across a period then there occurs a decrease in atomic size of the atoms. Hence, the atomic radius of a neutral fluorine atom is smaller than a neutral oxygen atom.
Moreover, atomic number of fluorine is 9 and it has higher nuclear charge due to which it will cause more attraction of electrons. As a result, size of a fluorine ion will be smaller.
On the other hand, size of oxygen atom is larger and has small nuclear charge due to which attraction of electrons by its nucleus will not be strong enough. Hence, the size of
will be larger.
Thus, we can conclude that the statement
has a larger nuclear charge than
has, is correct for the fact that the
ion is smaller than the
ion.
Answer:
Mass of magnesium oxide formed = 35.1 g
Explanation:
Given data:
Mass of Mg = 20.9 g
Mass of O₂ = 15.2 g
Mass of magnesium oxide formed = ?
Solution:
Chemical equation:
2Mg + O₂ → 2MgO
Number of moles of Mg:
Number of moles = mass/molar mass
Number of moles = 20.9 g/ 24 g/mol
Number of moles = 0.87 mol
Number of moles of O₂:
Number of moles = mass/molar mass
Number of moles = 15.2 g/ 32 g/mol
Number of moles = 0.475 mol
Now we will compare the moles of MgO with magnesium and oxygen.
Mg : MgO
2 : 2
0.87 : 0.87
O₂ : MgO
1 : 2
0.475 : 2/1×0.475 = 0.95
Number of moles of MgO formed by Mg are less thus Mg will limiting reactant.
Mass of MgO:
Mass = number of moles × molar mass
Mass = 0.87 mol × 40.3 g/mol
Mass = 35.1 g
Answer:
This addition follows MarkowniKov's rule
Explanation:
The image attached shows the mechanism of the reaction. It can easily be seen that a secondary carbocation is formed leading to the alkanol. The image simplifies the mechanism which involves the initial addition of the hydroxide followed by the hydrogen ion.