Answer:
Valence electrons are involved in Reaction B but not in Reaction A.
Explanation:
The description of reaction A in which protons are lost or gained by the atom of the element is a nuclear reaction. In nuclear reactions, the nucleons which are the protons and neutrons drives the reaction. No valence electrons in the orbiting shells are involved in this kind of reaction. During this type of reaction, an atom changes it identity to that of another.
Reaction B in which no identity change occurs is a chemical reaction. In chemical reactions bonds are formed by the atoms using the valence electrons that orbits round the central nucleus. The atoms remain the same but it chose to attain stability and an inert configuration by losing or gaining electrons.
Molar mass of N = 14 g/molMolar mass of O2 = 32 g/molAdding both masses = 46 g/molActual molar mass/ Empirical molar mass = 138.02 / 46 = 3Now multiplying this co effecient with empirical fomula NO2 = 3(NO2) = N3O6So according to above explanation,D) N3O6, is the correct answer.
Answer:
B. liquid to gas
Explanation:
Matter exists in 3 different states:
- Solid: in solids, particles in the substance are tightly bond to each other through strong intermolecular forces. Therefore, they can only vibrate around their fixed position, but they cannot move freely: as a result, the distance between the particles is the smallest among the 3 states of matter.
- Liquid: in a liquid, particles are able to slide past each other, however there are still intermolecular forces keeping them not too far from each other. As a result, in liquids, particles are on average more distance from each other compared to solids.
- Gas: in a gas, particles are completely free to move, as the intermolecular forces between them are negligible. As a result, in gases, the distance between molecules is the greatest, compared with solids and liquids.
Therefore, the phase changes in which the average distance between molecules increases is:
B. liquid to gas
They contain Carbon, Nitrogen, Hydrogen, Oxygen, and Sulfur