Answer:
.5 grams
Explanation:
1 gram is equal to 1000 milligrams (mg)
Answer:
D. Exothermic, because energy is being absorbed from the surroundings
Explanation:
This is true about the Exothemic reaction due to the fact that, the reaction occurs outside the body. During this reaction, the energy being absorbed <em>from the surrounding environment will hit the body surface thereby creating the coldness due to the heat given out from the body being minimal.</em>
Answer:
To calculate the tension on a rope holding 1 object, multiply the mass and gravitational acceleration of the object. If the object is experiencing any other acceleration, multiply that acceleration by the mass and add it to your first total.
Explanation:
The tension in a given strand of string or rope is a result of the forces pulling on the rope from either end. As a reminder, force = mass × acceleration. Assuming the rope is stretched tightly, any change in acceleration or mass in objects the rope is supporting will cause a change in tension in the rope. Don't forget the constant acceleration due to gravity - even if a system is at rest, its components are subject to this force. We can think of a tension in a given rope as T = (m × g) + (m × a), where "g" is the acceleration due to gravity of any objects the rope is supporting and "a" is any other acceleration on any objects the rope is supporting.[2]
For the purposes of most physics problems, we assume ideal strings - in other words, that our rope, cable, etc. is thin, massless, and can't be stretched or broken.
As an example, let's consider a system where a weight hangs from a wooden beam via a single rope (see picture). Neither the weight nor the rope are moving - the entire system is at rest. Because of this, we know that, for the weight to be held in equilibrium, the tension force must equal the force of gravity on the weight. In other words, Tension (Ft) = Force of gravity (Fg) = m × g.
Assuming a 10 kg weight, then, the tension force is 10 kg × 9.8 m/s2 = 98 Newtons.
Answer: 2. 2.0*10^2 W
Explanation:
Power = Work/Time
Power = (2.0*10^3) Joules/10 seconds
Power = 2.0*10^2 Watts
It’s hard to perfectly measure the distance something travels, as well as the exact time it takes, making the results have some variation.