First, we need the no.of moles of O2 = mass/molar mass of O2
= 55 g / 32 g/mol
= 1.72 mol
from the balanced equation of the reaction:
2H2 (g) + O2(g) → 2H2O(g)
we can see that the molar ratio between O2: H2O = 1: 2
So we can get the no.of moles of H2O = 2 * moles of O2
= 2 * 1.72 mol
= 3.44 mol
So by substitution by this value in ideal gas formula:
PV = nRT
when P = 12.4 atm & n H2O = 3.44 mol & R= 0.0821 & T = 85 + 273=358K
12.4 atm *V = 3.44 * 0.0821 * 358 = 8.15 L
∴ V ≈ 8.2 L
The conversion of volume to moles at STP is 1 mole.
The ideal gas equation is given as :
P V = n R T
where,
P = pressure of the gas
V = volume of the gas
n = ?
R = constant = 0.823 atm L / mol K
T = temperature
At STP , the pressure is 1 atm and the temperature is 273.15 K, the volume At STP is 22.4 L.
moles , n = P V / R T
n = ( 1 × 22.4 ) / (0.0823 × 273.15)
n = 1 mole
Thus, at STP , the number of moles is 1 mol.
To learn more about moles here
brainly.com/question/8429153
#SPJ4
Answer:
i think that the answer is B
Explanation:
I DON