Answer:
•Li2S is at a low melting point
•NCL3 is a covalent bond
Explanation:
Just some notes to help you:))
Covalent Bonds: A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs, and the stable balance of attractive and repulsive forces between atoms, when they share electrons
The number of mole of ethanol present in the beaker is 0.217 mole
Description of mole
The mole of a substance is related to it's mass and molar mass according to the following equation:
Mole = mass / molar mass
How to determine the mole of C₂H₅OH
From the question given above, the following data were obtained:
Mass of C₂H₅OH = 10 g
Molar mass of C₂H₅OH = (12×2) + (1.01×5) + 16 + 1.01 = 46.06 g/mol
Mole of C₂H₅OH =?
Mole = mass / molar mass
Mole of C₂H₅OH = 10 / 46.06
Mole of C₂H₅OH = 0.217 mole
Learn more about mole:
brainly.com/question/13314627#SPJ1
Answer:
CaCO3 is the limiting reactant
55 g of CO2 is made
Explanation:
First we must put down the reaction equation;
CaCO3(s) + 2HCl(aq) ---------> CaCl2(s) + H2O(l) + CO2(g)
Number of mole of CaCO3 = 125g/100gmol-1 = 1.25 moles
From the reaction equation;
1 mole of CaCO3 yields 1 mole of CO2
Hence 1.25 moles of CaCO3 yields 1.25 moles of CO2
For HCl;
number of moles of HCl = 125g/36.5 g mol-1 = 3.42 moles
From the reaction equation;
2 moles of HCl yields 1 mole of CO2
3.42 moles of HCl yields 3.42 * 1/2 = 1.71 moles of CO2
Hence CaCO3 is the limiting reactant.
Mass of CO2 produced = 1.25g * 44 gmol-1 = 55 g of CO2
Answer: Butane will effuse more quickly because it has a smaller molar mass
Explanation:
Molar mass of C4H10 = 58.123 g/mole
Molar mass of I2 = 253.808 g/mole