I hope you understand my working:
1) Finding the mol of NH3 to find the mol of (NH4)2SO4 (ammonium sulfate)
2) Mr of (NH4)2SO4
3) Theoretical yield: The actual grams of (NH4)2SO4 produced when reacting 0.514 mol of NH3 to 0.514 mol H2SO4
4) Using formula of (given grams)/(theoretical grams or actual grams) * 100 = 73%
5) Basic algebra
Answer: O2+6H12O6=CO2+ENERGY(ATP)
I DON'T THINK SHE IS CORRECT
Explanation:
Answer:
Limestone is easily eroded from above and below.
Explanation:
The Florida bedrock is largely made of limestone. Because limestone is a rock that is easily eroded, the landscape of a great part of Florida is classified as karstic.
Karstic landscapes are dotted by sinkholes, underground rivers, caves, and springs. The more acidic the groundwater or rainwater, the faster and more easily the limestone will succumb to erosion.
In this way, underground rivers, streams, runoff, rain, and underground water pooled in caves have all carved out gaps and caverns in the weak limestone bedrock.
Answer:
Product: ethyl L-valinate
Explanation:
If we want to understand what it is the molecule produced we have to an<u>alyze the reagents</u>. We have valine an <u>amino acid</u>, in this kind of compounds we have an <em>amine group</em> (
) and a <em>carboxylic acid</em> group (
). Additionally, we have an <u>alcohol </u>(
) in the presence of HCl (a <u>strong acid</u>) in the first step, and a base (
).
When we have an acid and an alcohol in a vessel we will have an <u>esterification reaction</u>. In other words, an ester is produced. As the <em>first step,</em> the oxygen in the C=O (in the carboxylic acid group) would be protonated. In the <em>second step</em>, the ethanol attacks the carbon in the C=O of the carboxylic acid group producing a new bond between the oxygen in the ethanol and the carbon in the carboxylic acid. In <em>step 3</em>, a proton is transferred to produce a better leaving group (
). In <em>step 4</em>, a water molecule leaves the main structure to produce again the double bond C=O. <em>Finally</em>, a base (
) removes the hydrogen from the C=O bond to produce ethyl L-valinate
See figure 1
I hope it helps!