Answer:
Based on these values and on consideration of molecular geometry, the H-Se bond can be considered almost _____non-polar___ and the molecule is __polar_____.
Explanation:
Looking at the difference in electro negativity of the two elements; hydrogen and selenium, one may be led to the conclusion that the molecule is nonpolar since the magnitude of electronegative between the two bonding atoms is minimal.
However, electro negativity difference alone is insufficient to determine the polarity of a molecule. The structure of the molecule is also considered. Based on the structure of the molecule, it is expected to have a dipole moment. Hence the molecule is polar.
Answer:-ΔG=-101.5KJ
Explanation:We have to calculate ΔG for the reaction so using the formula given in the equation we can calculate the \Delta G for the reaction.
We need to convert the unit ofΔS in terms of KJ/Kelvin as its value is given in terms of J/Kelvin
Also we need to convert the temperature in Kelvin as it is given in degree celsius.

After calculating forΔG we found that the value ofΔG is negative and its value is -101.74KJ
For a reaction to be spontaneous the value of \Delta G \ must be negative .
As the ΔG for the given reaction is is negative so the reaction will be spontaneous in nature.
In this reaction since the entropy of reaction is positive and hence when we increase the temperature term then the overall term TΔS would become more positive and hence the value of ΔG would be less negative .
Hence the value of ΔG would become more positive with the increase in temperature.
So we found the value of ΔG to be -101.74KJ
There will be a shift towards the reactants
- 407.4 kJ of heat is released.
<u>Explanation:</u>
We have to write the balanced equation as,
2 C₂H₆(g) + 7O₂ → 4CO₂ + 6H₂O
Here 2 moles of ethane reacts in this reaction.
Now we have to find out the amount of ethane reacted using its given mass and molar mass as,
2 mol C₂H₆ × 30.07 g of C₂H₆ / 1 mol C₂H₆ = 60.14 g of C₂H₆
Heat released = ΔH × given mass / 60.14
= - 1560. 7 kj ×15.7 g / 60. 14 g = -407. 4 kJ