Answer:
EIt involves copying a gene's DNA sequence to make an RNA molecule. Transcription is performed by enzymes called RNA polymerases, which link nucleotides to form an RNA strand (using a DNA strand as a template). ... Transcription is controlled separately for each gene in your genome.xplanation:
Answer:
D) the carbon with the low-energy phosphate on it in 1,3 BPG is labeled.
Explanation:
Glycolysis has 2 phase (1) preparatory phase (2) pay-off phase.
<u>(1) Preparatory phase</u>
During preparatory phase glucose is converted into fructose-1,6-bisphosphate. Till this time the carbon numbering remains the same i.e. if we will label carbon at 6th position of glucose, its position will remian the same in fructose-1,6-bisphosphate that means the labeled carbon will still remain at 6th position.
When fructose-1,6-bisphosphate is further catalyzed with the help of enzyme aldolase it is cleaved into two 3 carbon intermediates which are glyceraldehyde 3-phosphate (GAP) and dihyroxyacetone phosphate (DHAP). In this conversion, the first three carbons of fructose-1,6-bisphosphate become carbons of DHAP while the last three carbons of fructose-1,6-bisphosphate will become carbons of GAP. It simply means that GAP will acquire the last carbon of fructose-1,6-bisphosphate which is labeled. Now the last carbon of GAP which has phosphate will be labeled.
<u>(2) Pay-off phase</u>
During this phase, GAP is dehydrogenated into 1,3-bisphosphoglycerate (BPG) with the help of enzyme glyceraldehyde 3-phosphate dehydrogenase. This oxidation is coupled to phosphorylation of C1 of GAP and this is the reason why 1,3-bisphosphoglycerate has phosphates at 2 positions i.e. at position 1 in which phosphate is newly added and position 3rd which already had labeled carbon.
It is pertinent to mention here that<u> BPG has a mixed anhydride and the bond at C1 is a very high energy bond.</u> In the next step, this high energy bond is hydrolyzed into a carboxylic acid with the help of enzyme phosphoglycerate kinase and the final product is 3-phosphoglycerate. Hence, the carbon with low energy phosphate i.e. the carbon at 3rd position remains labeled.
Answer:
1) No, 2) Yes, 3) Yes
Explanation:
Refer to solubility rules to understand if a precipitate occurs between a mix of solutions.
Rubidium is the alkali metal that would melt on a hot day.
Molar mass is the amount grams that one mole weighs.
Explanation: You need to find the molar mass of NaCl which is the same as the amu on the periodic table in grams. So it is 22.99(Na) + 35.45(Cl) = 58.44
You also know that for every mole of NaCl you have 1 mole of Na because every molecule of NaCl has 1 atom of Na.
Finally, using the periodic table, again, you see that the molar mass of Na is 22.99.
Then using stoichiometry, you can find the grams of sodium.
100(g NaCl) * 1 mol (NaCl)/58.44 g (NaCl) * 1 mol (Na)/ 1 mol (NaCl) * 22.99 (g of Na)/ 1 mol (Na)
which equals 39.339435 g of Na.
If you need to maintain significant figures the answer will be 40.
hope this helps