Answer: The required solution is

Step-by-step explanation: We are given to solve the following differential equation :

Let us consider that
be an auxiliary solution of equation (i).
Then, we have

Substituting these values in equation (i), we get
![5m^2e^{mt}+3me^{mt}-2e^{mt}=0\\\\\Rightarrow (5m^2+3y-2)e^{mt}=0\\\\\Rightarrow 5m^2+3m-2=0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{since }e^{mt}\neq0]\\\\\Rightarrow 5m^2+5m-2m-2=0\\\\\Rightarrow 5m(m+1)-2(m+1)=0\\\\\Rightarrow (m+1)(5m-1)=0\\\\\Rightarrow m+1=0,~~~~~5m-1=0\\\\\Rightarrow m=-1,~\dfrac{1}{5}.](https://tex.z-dn.net/?f=5m%5E2e%5E%7Bmt%7D%2B3me%5E%7Bmt%7D-2e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%20%285m%5E2%2B3y-2%29e%5E%7Bmt%7D%3D0%5C%5C%5C%5C%5CRightarrow%205m%5E2%2B3m-2%3D0~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7Bsince%20%7De%5E%7Bmt%7D%5Cneq0%5D%5C%5C%5C%5C%5CRightarrow%205m%5E2%2B5m-2m-2%3D0%5C%5C%5C%5C%5CRightarrow%205m%28m%2B1%29-2%28m%2B1%29%3D0%5C%5C%5C%5C%5CRightarrow%20%28m%2B1%29%285m-1%29%3D0%5C%5C%5C%5C%5CRightarrow%20m%2B1%3D0%2C~~~~~5m-1%3D0%5C%5C%5C%5C%5CRightarrow%20m%3D-1%2C~%5Cdfrac%7B1%7D%7B5%7D.)
So, the general solution of the given equation is

Differentiating with respect to t, we get

According to the given conditions, we have

and
![y^\prime(0)=2.8\\\\\Rightarrow -A+\dfrac{B}{5}=2.8\\\\\Rightarrow -5A+B=14\\\\\Rightarrow -5A-A=14~~~~~~~~~~~~~~~~~~~~~~~~~~~[\textup{Uisng equation (ii)}]\\\\\Rightarrow -6A=14\\\\\Rightarrow A=-\dfrac{14}{6}\\\\\Rightarrow A=-\dfrac{7}{3}.](https://tex.z-dn.net/?f=y%5E%5Cprime%280%29%3D2.8%5C%5C%5C%5C%5CRightarrow%20-A%2B%5Cdfrac%7BB%7D%7B5%7D%3D2.8%5C%5C%5C%5C%5CRightarrow%20-5A%2BB%3D14%5C%5C%5C%5C%5CRightarrow%20-5A-A%3D14~~~~~~~~~~~~~~~~~~~~~~~~~~~%5B%5Ctextup%7BUisng%20equation%20%28ii%29%7D%5D%5C%5C%5C%5C%5CRightarrow%20-6A%3D14%5C%5C%5C%5C%5CRightarrow%20A%3D-%5Cdfrac%7B14%7D%7B6%7D%5C%5C%5C%5C%5CRightarrow%20A%3D-%5Cdfrac%7B7%7D%7B3%7D.)
From equation (ii), we get

Thus, the required solution is

9514 1404 393
Answer:
see attached
Step-by-step explanation:
Polynomial long division is done the way any long division is done. Find a "partial quotient", subtract from the dividend the product of that partial quotient and the divisor. The result is a new dividend. Repeat until the degree of the dividend is less than that of the divisor.
__
In the attached, the "Hints" show you how the partial quotient is found, and they show you how the product of the partial quotient and divisor is found.
The partial quotient term is simply the ratio of the highest degree terms of dividend and divisor. (Unlike numerical long division, there is no guessing.)
__
The remainder is the dividend of lower degree than the divisor. As in numerical long division, the full quotient expresses the remainder over the divisor.
For example, 5 ÷ 3 = 1 r 2 = 1 + 2/3.
Your full quotient is (n+5) +1/(n-6).
Answer:
What is the average rate of change from x = −4 to x = 1? x= -4 x + 5
Answer:
8
Step-by-step explanation:
0.5x-7=3
add 7 to both sides
0.5x=4
multiply both sides by 2
x=8
Answer:
56 = (0.85)w
Step-by-step explanation:
"is" translates to "=".
"of" translates to "×".
We can let "what number" translate to "w".
Then ...
56 is 85% of what number . . . . translates to ...
56 = 0.85×w
_____
Of course, you know that 85% = 85/100 = 0.85.