A single ringed nitrogeo base is thymine (C)
The Molar concentration of your analyte solution is 1.17 m
<h3>What is titration reaction?</h3>
- Titration is a chemical analysis procedure that determines the amount of a sample's ingredient by adding a precisely known amount of another substance to the measured sample, with which the desired constituent reacts in a specific, known proportion.
Make use of the titration formula.
The formula is molarity (M) of the acid x volume (V) of the acid = molarity (M) of the base x volume (V) of the base.
if the titrant and analyte have a 1:1 mole ratio. (Molarity is a measure of a solution's concentration represented as the number of moles of solute per litre of solution.)
26 x 1.8 = 40 x M
M = 26 x1.8 /40
M = 1.17
The Molar concentration of your analyte solution is 1.17 m
To learn more about Titration refer,
brainly.com/question/186765
#SPJ4
Answer:
1) Salts X and Y
2) The solubility of the salts
3) a) The solvent
b) The solvent temperature
Explanation:
1) The independent variable is the variable that is suspected to be the cause of the subject of the investigation
The given investigation is meant to investigate the solubility of different salts
Therefore, the solubility is expected to be dependent on the type of salt, and the independent variable is the type of salt, X or Y
2) The dependent variable is the effect meant to be observed in the investigation, which is the solubility of the salt in water at room temperature
3) The control variables are the variables which are held constant during the investigation, including;
a) The solvent used if the investigation; water
b) The temperature of the solvent; Room temperature
Answer:
Molecules
Explanation:
If you had more than one atom chemically bonded together, then regardless of the types of atoms that are bonded, you're going to have a molecule regardless.
Answer:
1.94 × 10⁻³
Explanation:
Step 1: Calculate the concentration of H⁺ ions
We will use the definition of pH.
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -2.32 = 4.79 × 10⁻³ M
Step 2: Calculate the acid dissociation constant (Ka) of the acid
For a monoprotic weak acid, whose concentration (Ca) is 0.0118 M, we can use the following expression.
Ka = [H⁺]²/Ca
Ka = (4.79 × 10⁻³)²/0.0118 = 1.94 × 10⁻³