As we know that range of the projectile motion is given by

here we know that range will be same for two different angles
so here we can say the two angle must be complementary angles
so the two angles must be

so it is given that one of the projection angle is 75 degree
so other angle for same range must be 90 - 75 = 15 degree
so other projection angle must be 15 degree
Answer:
A) 31 kJ
B) 1.92 KJ
C) 40 , 2.48
Explanation:
weight of person ( m ) = 79 kg
height of jump ( h ) = 0.510 m
Compression of joint material ( d ) = 1.30 cm ≈ 0.013 m
A) calculate the force
Fd = mgh
F = mgh / d
W = mg
F(net) = W + F = mg ( 1 + 
= 79 * 9.81 ( 1 + (0.51 / 0.013) )
= 774.99 ( 40.231 ) ≈ 31 KJ
B) calculate the force when the stopping distance = 0.345 m
d = 0.345 m
Fd = mgh hence F = mgh / d
F(net) = W + F = mg ( 1 + 
= 79 * 9.81 ( 1 + (0.51 / 0.345) )
= 774.99 ( 2.478 ) = 1.92 KJ
C) Ratio of force in part a with weight of person
= 31000 / ( 79 * 9.81 ) = 31000 / 774.99 = 40
Ratio of force in part b with weight of person
= 1920 / 774.99 = 2.48
The force of the air resistance is 4 N.
The given parameters;
- mass of the flower pot, m = 2 kg
- weight of the flower pot, W = 20 N
Let the air resistance = F
Apply Newton's second law of motion to determine the force of the air resistance acting upward to oppose the motion of the pot falling downwards.

Thus, the force of the air resistance is 4 N.
Learn more here: brainly.com/question/19887955
Answer:

Explanation:
We need to apply conservation of momentum and energy to solve this problem.
<u>Conservation of momentum</u>

(1)
- m(c) is the mass of stick clay
- m(w) is the mass of the wooden block
- v(ic) is the initial velocity of clay
- V is the final velocity of the system clay plus wood.
<u>Conservation of total energy</u>
The change in kinetic energy is equal to the change in internal energy, in our case it would be the energy loss due to the friction force. Let's recall the definition of work, it is the dot product between force and displacement, Therefore:



We can find V from this equation:

Now, let's put V into the equation (1) and find v(ic)

I hope it helps you!
<u />