Matt Biondi..?
(I don’t know if it’s right, sorry if it is wrong)
:)
2/5 = .4
.4*100= 40%
Alex spends more time
Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S
= 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S
= 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S
> σ
1) 29.4 N
The force of gravity between two objects is given by:

where
G is the gravitational constant
M and m are the masses of the two objects
r is the separation between the centres of mass of the two objects
In this problem, we have
(mass of the Earth)
(mass of the box)
(Earth's radius, which is also the distance between the centres of mass of the two objects, since the box is located at Earth's surface)
Substituting into the equation, we find F:

2) 
Let's now calculate the ratio F/m. We have:
F = 29.4 N
m = 3.0 kg
Subsituting, we find

This is called acceleration of gravity, and it is the acceleration at which every object falls near the Earth's surface. It is indicated with the symbol
.
We can prove that this is the acceleration of the object: in fact, according to Newton's second law,

where a is the acceleration of the object. Re-arranging,

which is exactly equal to the quantity we have calculated above.
Answer:
Explanation:
Given dish width= 48ft
Depth = 4ft
Using equation of a parabola
x²= 4py
48² = 4p 4
4p = 576
P= 144ft
Thus the the receiver should be placed 144ft from t the vertex