Answer : The value of
for the final reaction is, 
Explanation :
The following equilibrium reactions are :
(1)

(2)

(3)

The final equilibrium reaction is :

Now we have to calculate the value of
for the final reaction.
First half the equation 1, 2 and 3 that means we are taking square root of equilibrium constant and then add all the equation 1, 2 and 3 that means we are multiplying all the equilibrium constant, we get the final equilibrium reaction and the expression of final equilibrium constant is:

Now put all the given values in this expression, we get :


Therefore, the value of
for the final reaction is, 
<span>KNO3 is a strong electrolyte because it completely dissociates into ions in water. Dissociates means it immediately breaks into ions of K+ (potassium cation) and NO3- (nitrate anion). Thus it also conducts electricity very well compared to a weak electrolyte.</span>
Answer:
The concentration in mol/L = 4.342 mol/L
Explanation:
Given that :
mass of sodium chloride = 25.4 grams
Volume of the volumetric flask = 100 mL
We all know that the molar mass of sodium chloride NaCl = 58.5 g/mol
and number of moles = mass/molar mass
The number of moles of sodium chloride = 25.4 g/58.5 g/mol
The number of moles of sodium chloride = 0.434188 mol
The concentration in mol/L = number of mol/ volume of the solution
The concentration in mol/L = 0.434188 mol/ 100 × 10⁻³ L
The concentration in mol/L = 4.34188 mol/L
The concentration in mol/L = 4.342 mol/L
Bromine vs Chlorine | Br vs Cl
Halogens are group VII elements in the periodic table, and all are electronegative elements and have the capability to produce -1 anions.
Bromine
Bromine is denoted by the symbol Br. This is in the 4th period of the periodic table between chlorine and iodine halogens. Its electronic configuration is [Ar] 4s2 3d10 4p5. The atomic number of bromine is 35. Its atomic mass is 79.904. Bromine staChlorine is an element in the periodic table which is denoted by Cl. It is a halogen (17th group) in the 3rd period of the periodic table. The atomic number of chlorine is 17; thus, it has seventeen protons and seventeen electrons. Its electron configuration is written as 1s2 2s2 2p6 3s2 3p5. Since the p sub level should have 6 electrons to obtain the Argon, noble gas electron configuration, chlorine has the ability to attract an electron. ys as a red-brown color liquid at room temperature.