1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oksanka [162]
3 years ago
15

A conical water tank with vertex down has a radius of 13 feet at the top and is 21 feet high. If water flows into the tank at a

rate of 30 ft^3/min, how fast is the depth of the water increases when the water is 17 feet deep?
The depth of the water is increasing at equation editorEquation Editor_____ ft/min.

Mathematics
1 answer:
VLD [36.1K]3 years ago
3 0

Answer:

\frac{dh}{dt}\approx0.08622\text{ ft/min}

Step-by-step explanation:

We know that the conical water tank has a radius of 13 feet and is 21 feet high.

We also know that water is flowing into the tank at a rate of 30ft³/min. In other words, our derivative of the volume with respect to time t is:

\frac{dV}{dt}=\frac{30\text{ ft}^3}{\text{min}}

We want to find how fast the depth of the water is increasing when the water is 17 feet deep. So, we want to find dh/dt.

First, remember that the volume for a cone is given by the formula:

V=\frac{1}{3}\pi r^2h

We want to find dh/dt. So, let's take the derivative of both sides with respect to the time t. However, first, let's put the equation in terms of h.

We can see that we have two similar triangles. So, we can write the following proportion:

\frac{r}{h}=\frac{13}{21}

Multiply both sides by h:

r=\frac{13}{21}h

So, let's substitute this in r:

V=\frac{1}{3}\pi (\frac{13}{21}h)^2h

Square:

V=\frac{1}{3}\pi (\frac{169}{441}h^2)h

Simplify:

V=\frac{169}{1323}\pi h^3

Now, let's take the derivative of both sides with respect to t:

\frac{d}{dt}[V]=\frac{d}{dt}[\frac{169}{1323}\pi h^3}]

Simplify:

\frac{dV}{dt}=\frac{169}{1323}\pi \frac{d}{dt}[h^3}]

Differentiate implicitly. This yields:

\frac{dV}{dt}=\frac{169}{1323}\pi (3h^2)\frac{dh}{dt}

We want to find dh/dt when the water is 17 feet deep. So, let's substitute 17 for h. Also, let's substitute 30 for dV/dt. This yields:

30=\frac{169}{1323}\pi (3(17)^2)\frac{dh}{dt}

Evaluate:

30=\frac{146523}{1323}\pi( \frac{dh}{dt})

Multiply both sides by 1323:

39690=146523\pi\frac{dh}{dt}

Solve for dh/dt:

\frac{dh}{dt}=\frac{39690}{146523}\pi

Use a calculator. So:

\frac{dh}{dt}\approx0.08622\text{ ft/min}

The water is rising at a rate of approximately 0.086 feet per minute.

And we're done!

Edit: Forgot the picture :)

You might be interested in
Solve using break apart strategy 132+42=
Anon25 [30]
130+40=170
2+2=4
170+4=174
7 0
3 years ago
Pls help me find the area of compound shapes?!?!
Alex73 [517]
3x7 + 2x3 = 22 + 6 = 28 is the area
6 0
2 years ago
Read 2 more answers
Write an equation for the following problem and then solve the equation.
melomori [17]

Answer:bhbehrf

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Use the surface integral in​ Stokes' Theorem to calculate the circulation of the field Bold Upper F equals x squared Bold i plus
Alinara [238K]

Answer:

The circulation of the field f(x) over curve C is Zero

Step-by-step explanation:

The function f(x)=(x^{2},4x,z^{2}) and curve C is ellipse of equation

16x^{2} + 4y^{2} = 3

Theory: Stokes Theorem is given by:

I= \int \int\limits {{Curl f\cdot \hat{N }} \, dx

Where, Curl f(x) = \left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]

Also, f(x) = (F1,F2,F3)

\hat{N} = grad(g(x))

Using Stokes Theorem,

Surface is given by g(x) = 16x^{2} + 4y^{2} - 3

Therefore, tex]\hat{N} = grad(g(x))[/tex]

\hat{N} = grad(16x^{2} + 4y^{2} - 3)

\hat{N} = (32x,8y,0)

Now,  f(x)=(x^{2},4x,z^{2})

Curl f(x) = \left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\F1&F2&F3\end{array}\right]

Curl f(x) = \left[\begin{array}{ccc}\hat{i}&\hat{j}&\hat{k}\\\frac{∂}{∂x} &\frac{∂}{∂y} &\frac{∂}{∂z} \\x^{2}&4x&z^{2}\end{array}\right]

Curl f(x) = (0,0,4)

Putting all values in Stokes Theorem,

I= \int \int\limits {Curl f\cdot \hat{N} } \, dx

I= \int \int\limits {(0,0,4)\cdot(32x,8y,0)} \, dx

I= \int \int\limits {(0,0,4)\cdot(32x,8y,0)} \, dx

I=0

Thus, The circulation of the field f(x) over curve C is Zero

3 0
3 years ago
Helpppppppp I don’t get it
frozen [14]
Divide 8 ft by 0.75, then divide by one third. 
7 0
3 years ago
Other questions:
  • How do you find the total area of a composite figure
    7·1 answer
  • 19. Rae supervises a loading dock. She
    14·1 answer
  • I need help please!!! 30 points
    9·1 answer
  • Which of the following is the equation of a line that is parallel to y=5x-3 and that passes through the point (2,5)
    10·1 answer
  • Solve this by Substituton
    7·1 answer
  • Pls anybody know this ?​
    14·1 answer
  • What does 1/3 = please answer and i will give u brainliest i need help asap!
    7·1 answer
  • Ike Phillips worked 6.7 hours at time-and-a-half pay and 3.4
    10·1 answer
  • HELP PLS
    15·2 answers
  • #94 will give brainliest to best answer!​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!