A. The concentration is in mol/L
Answer : The mole fraction and partial pressure of
and
gases are, 0.267, 0.179, 0.554 and 1.54, 1.03 and 3.20 atm respectively.
Explanation : Given,
Moles of
= 1.79 mole
Moles of
= 1.20 mole
Moles of
= 3.71 mole
Now we have to calculate the mole fraction of
and
gases.


and,


and,


Thus, the mole fraction of
and
gases are, 0.267, 0.179 and 0.554 respectively.
Now we have to calculate the partial pressure of
and
gases.
According to the Raoult's law,

where,
= partial pressure of gas
= total pressure of gas = 5.78 atm
= mole fraction of gas


and,


and,


Thus, the partial pressure of
and
gases are, 1.54, 1.03 and 3.20 atm respectively.
Answer:
Odour is intensive
Explanation:
intensive properties are Independent of the amount of matter
Answer:
See explaination and attachment
Explanation:
please kindly see attachment for the step by step solution of the given problem.
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.